
© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

1

Reinforcement Learning

Lektor Dr.techn. Alexander K. Seewald
Österreichisches Forschungsinstitut

für Artificial Intelligence

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

2

Reinforcement Learning

Choose optimal actions (control strategies, policies) based
on experience gained by acting in an environment.

• learning without a teacher
• learning by trial and error

Typical scenarios
• Mobile robot navigation, movement (leg control) and goal

learning, Game Playing (Backgammon, Othello), ...

Central problem
• Delayed reward (no immediate classification / feedback

available for most actions)
⇒ Temporal Credit Assignment Problem

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

3

Example: Learning to Play Checkers

Initial formulation of learning task
• Task: play checkers
• Performance measure: percent of games won in world tournament
• Training experience: games played against itself
To be defined
• Exact type of knowledge to be learned (target concept)
• A representation for this target concept
• A learning mechanism

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

4

Evaluation Function V

Possible evaluation function V for our checkers problem

• if b is a final board state and is won: V(b) = 100

• if b is a final board state and is lost: V(b) = -100

• if b is a final board state and is drawn: V(b) = 0

• otherwise (if b is not a final board state): V(b)=V(f(b)), where f(b) is the best
final board state reachable from b by optimal play ⇒ V(f(b)) ∈{ -100, 0, 100}

Non-operational definition! (i.e. we would need to know optimal play a priori to
determine f(b) and thus V(f(b)) – but this is what we are looking for!)

⇒⇒ Learn operational approximation V’ of ideal target V

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

5

Representation of V'

Character ize board state via set of six features (very simple board
representation due to [Simon, 1963])

• x1 : number of black pieces on the board

• x2 : number of white pieces on the board

• x3 : number of black kings on the board

• x4 : number of white kings on the board

• x5 : number of black pieces threatened by white

• x6 : number of white pieces threatened by black

Represent V’ (b) as linear function of these 6 features:

V’(b) = w0 + w1x1 + w2x2 + w3x3 + w4x4 + w5x5 + w6x6

Learning problem: Learn values for coeff icients w0-6 so that V’ (b) gives high
values for good/promising board states, and low values for undesirable states.

More complex approximations are possible, e.g. all regression learners, neural
networks, rote learning, abitrary numeric function of board features etc..

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

6

We still need...

Training examples for V: [b,Vtrain(b)] where b = board state, described by 6
features; Vtrain(b) = evaluation of b (ideally: value of optimal function V(b) – or
at least a feasible approximation)
An example: [(x1 = 3, x2 = 0, x3 = 1, x4 = 0, x5 = 0, x6 = 0), +100]

= final board state, won for black because x2 = 0
Function approximation (= learning) algorithm L for learning target function

V’ : B → R, given finite number of examples (b,Vtrain(b))

Problem: Correct evaluation V(b) is known only for final states, but is unknown
for all intermediate states!

Solution (simple form of Q-learning): Estimate training value Vtrain(b)) by using
the current estimate (V’) of the quality of b’s successor state (because that state
is one step closer to the final state, whose true evaluation is known):

• if b is a final board state and is won/lost/drawn: Vtrain(b) = +100/-100/0
• otherwise (i.e., if b is not a final board state): Vtrain(b) = V’ (successor(b))

Effect: Stepwise back-propagation of information (estimated values) from final
game states to intermediate states. Update after each game.

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

7

Example: Learning Checkers

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

8

Def.: Reinforcement Learning

An agent interacting with its
environment. The agent exists
in an environment described by
some set of possible states S. It
can perform any of a set of
possible actions A. Each time it
performs an action at in some
state st the agent receives a real-
valued reward rt that indicates
the immediate value of this
state-action transition.
This produces a sequences of
states si , actions ai , and
immediate rewards ri as shown
on the left. The agent's task is to
learn a control policy ππ: S→→ A
that maximizes the expected
sum of these rewards, with
future rewards discounted
exponentially by their delay.

V(s0)=

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

9

Refined Definition RL & Solutions

Learn optimal policy ππ*: S→→A (i.e. policy that maximizes
Vπ(s) for all starting states s – not only for s0!)

ππ* = arg maxππ Vππ(s), ∀∀s

How to learn?
• If both r(s,a) and state transition function δ(s,a) are known:

Efficient solution via dynamic programming techniques.
• If not, more general approach is needed: Q-Learning

Problem: Cannot learn π* : S→A directly: Training data is
just sequence of immediate rewards r(si , ai).

⇒⇒Learn V*: S→→R instead, just like in Checkers example!

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

10

Q-Learning

Optimal evaluation function V* : S→R

• Agent should prefer state s1 over state s2 whenever V*(s1) > V*(s2)

• Optimal action in state s is action a that maximizes immediate reward r(s,a) plus
V* of immediate successor state (discounted by γ):

ππ* (s) = argmaxa(r (s,a) + γγV*(δδ(s,a))) where state-transition function
δ(s,a) gives the state resulting from applying action a to state s

Problem: V*(s) can be usefully applied to make decisions only if reward function
r(s,a) and state transition function δ(s,a) are known – which they are not!

Solution: Learn evaluation function for pairs (state,action) instead:

Q: S×A→→R

Q(s,a)=r (s,a)+γγV*(δδ(s,a)) ⇔⇔ ππ*(s) = argmaxa Q(s,a)

substitute V*(s)=maxa'Q(s,a'): Q(s,a)=r(s,a)+γγmaxa'Q(δδ(s,a),a')

Key idea: Iterative approximation, i.e. using current approximation Q' of
successor state to improve estimate of Q' in previous state.

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

11

Example World

One optimal policyQ(s,a) values

r(s,a) immediate reward values Vπ*(s) values for γ=0.9

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

12

Algorithm for learning Q

Representation of Q': large table with separate entry for each
<s,a> state-action pair.

For each s, a initialize the table entry Q’(s,a) to zero
Observe the current state s
Do forever:
• Select an action a and execute it
• Receive immediate reward r
• Observe the new state succ(s)=δ(s,a)
• Update the table entry for Q’(s,a) as follows:

Q’(s,a) = r + γ maxa’Q’(succ(s),a’)
• s=succ(s)

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

13

One Step of Q-Learning

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

14

TD-Gammon

Major Success for Reinforcement Learning

• Started with only basic rules of Backgammon

• Learned by playing against itself via Temporal-Difference Learning
(=generalization of Q-learning, using a neural network to approximate Q)

• Result: Excellent play at grandmaster level. In some cases, has even changed
expert's judgement of best move.

However, later shown to rely on Backgammon' s specific structure - much
simpler approaches work equally well. RL does not work so well for most
other games, e.g. Go and Othello. Hand-tuning V' works better in some
cases, e.g. the Checkers Champion Chinook (Schaeffer, 1997).

