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Bayesian Methods & Bayes Theorem

Bayesian Methods provide the basis for probabilistic reasoning:

• Theoretical framework for machine learning, classification, knowledge
representation and analysis.

• Allows to integrate uncertain and partial domain knowledge

• Direct modeling of uncertainty

• Easily handles noisy and incomplete data sets with MVs

One cornerstone of Bayesian Methods is Bayes' Rule:

The probability of function/model f given training data TD is equal to the
probability of TD given f multiplied by the (prior) probability of h divided by
the (prior) probability of TD. All classification methods can be seen as
estimating Bayes' Rule, with different techniques to estimate P(TD|f).
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Maximum Likelihood

Among all f from Concept Space CS, choose f which has highest probabilit y given
training data TD. This is the maximum a posteriori (MAP) model:

In some cases, we can assume every f ∈ CS to be equally probable. In that case,
the above simpli fies to the maximum likelihood (ML) model:

Example: Cancer diagnosis
Two hypotheses: cancer, ¬cancer (|CS|=2)
Diagnostic test for cancer with two outcomes: ⊕ = + , ∅ = –
Known prob.: P(cancer) = 0.008 P(¬cancer) = 0.992
(sensitivity) P(⊕ | cancer) = 0.98 P(∅ | cancer) = 0.02

P(⊕ | ¬cancer)= 0.03 P(∅ | ¬cancer)= 0.97 (specificity)
P(cancer | ⊕) = P(⊕ | cancer)P(cancer) = 0.98 * 0.008 = 0.0078 (21%)
P(¬cancer | ⊕)= P(⊕ | ¬cancer)P(¬cancer) = 0.03 * 0.992 = 0.0298 (79%,MAP)
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Basic Probability Formulas

∑∑
==

=⇒=

=

∧−+=∨
=

==∧
=

n

i
ii APABPBP

TDP

fPfTDP
TDfP

BAPBPAPBAP

APABPBPBAPBAP

1

n

1i
i

n1

)()|()(1)P(Awith 

exclusivemutually  are A,...,A events if :

)(

)()|(
)|(

iesprobabilitprior  andposterior  relating :

)()()()(

B) ORA  ( B andA  events  twoofn disjunctio a ofy probabilit :

)()|()()|()(

B) ANDA  ( B andA  events ofn conjunctio a ofy probabilit :

yprobabilit total of Theorem

Theorem Bayes

rule Sum

ruleProduct 



© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

5

Bayes Optimal Classifier

So far, we have searched for the best f ∈ CS. However, it is possible to do better
by combining all functions/models in CS, weighted by posterior probabil ities:

where Class is the set of possible classes, TD = training data, CS = concept space.

This is the Bayes Optimal Classifier.

Advantages

• Optimali ty: No other classification method with same CS and same prior
knowledge can outperform this method (on average). This method maximizes
the probability that the new instance is classified correctly, given the available
data TD, concept space CS and posterior prob. over all the hypotheses f.

• Predictions correspond to a function/model not in CS – more general than CS!

Disadvantages

• Needs to sum over all possible functions f. Very costly and often intractable.

• Probabiliti es are usually unknown, and some of them are very hard to estimate.
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Gibbs Algor ithm &  Naïve Bayes

Gibbs Algorithm is a more eff icient but less optimal classifier. Under certain
conditions it has at most twice the error rate of the optimal Bayes classifier.
However, it is still very ineff icient.

Gibbs Algor ithm

A very eff icient classifier is obtained by assuming the attributes to be
conditionally independent (P(Ai|Aj)=P(Ai) for ∀i,j). This is Naïve Bayes:

P(Clj) and P(ai|Clj) can be eff iciently estimated from training data TD by
counting. This is a commonly used classifier in machine learning, and works
reasonably well even when the conditional independence assumption is
violated.

1.  Choose a function f from CS at random, according to posterior probabilit y
distribution over CS (i.e. P(f |TD))

2.  Use f to predict the classification of next instance x.
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Example: Weather dataset

Classify weather dataset with Naïve Bayes

• Estimate P(Clj): P(yes)=9/14, P(no)=5/14

• Estimate P(ai|Clj), i.e. probabilit y of attribute i
having value ai, given class of Clj:

yes no
overcast 4 0

rainy 3 2
sunny 2 3

Play?
Outlook yes no

true 3 3
false 6 2

Windy
Play?

P(outlook=overcast | yes)=4/9    P(w.=t | yes)=3/9

P(outlook=rainy     | yes)= 3/9   P(w.=f | yes)=6/9

P(outlook=sunny    | yes)= 2/9

P(outlook=overcast| no) = 0/5   P(w.=t | no) =3/5

P(outlook=rainy     | no) = 2/5   P(w.=f | no) =2/5

P(outlook=sunny    | no) = 3/5
Problem: Estimates may be zero ⇒ P(no | outlook=overcast) would always be 0.

⇒⇒ Laplace cor rection: Use (a+1)/(b+2) instead of a/b, e.g. 1/7 instead of 0/5.

O ut lo ok T H W indy P lay?
overcast 6 4°F 6 5% true yes
overcast 7 2°F 9 0% true yes
overcast 8 1°F 7 5% f al se yes
overcast 8 3°F 8 6% f al se yes

rai ny 6 8°F 8 0% f al se yes
rai ny 7 0°F 9 6% f al se yes
rai ny 7 5°F 8 0% f al se yes
rai ny 6 5°F 7 0% true n o
rai ny 7 1°F 9 1% true n o
sunny 6 9°F 7 0% f al se yes
sunny 7 5°F 7 0% true yes
sunny 7 2°F 9 5% f al se n o
sunny 8 0°F 9 0% true n o
sunny 8 5°F 8 5% f al se n o
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Example: Weather dataset (2)

• For quantitative / numerical variables,
probabilit ies cannot be determined by counting.
Probabilit y density functions must be defined.
Common assumption: Values are normally
distributed. Then, arithmetic mean and standard
deviation define a normal probabilit y density
function as follows:

O utlo o k T H W indy P la y?
overcast 6 4°F 6 5% true yes

rai ny 6 8°F 8 0% f al se yes
sunny 6 9°F 7 0% f al se yes
rai ny 7 0°F 9 6% f al se yes

overcast 7 2°F 9 0% true yes
sunny 7 5°F 7 0% true yes
rai ny 7 5°F 8 0% f al se yes

overcast 8 1°F 7 5% f al se yes
overcast 8 3°F 8 6% f al se yes

rai ny 6 5°F 7 0% true n o
rai ny 7 1°F 9 1% true n o
sunny 7 2°F 9 5% f al se n o
sunny 8 0°F 9 0% true n o
sunny 8 5°F 8 5% f al se n o
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yes no
µ 73.0 74.6
σ2 38.0 62.3

Temp.
Play?

yes no
µ 79.1 86.2
σ2 104.4 94.7

Hum.
Play?

where µ and σ2 are chosen depending on Clj and Ai

E.g. for P(temp.=x | no) use µ=74.6 and σ2=62.3;

for P(hum.=x | yes) use µ=79.1 and σ2=104.4 etc..
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Bayesian Belief Networks

Naïve Bayes: Assumes conditional independence of all attribute. If this is true,
then it outputs the optimal Bayes classification. However, in many cases this
assumption is overly restrictive.

⇒⇒ Bayesian Networks: Allow arbitrary conditional dependence. Dependency
information can be learned from training data, or specified as background
knowledge. Usually visualized as directed acyclic graph (DAG)

E.g. given a burglary, what is the prob.

that John calls?

Exact computation of complex queries is NP-hard(!)
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Association Rule Mining

Different learning methodology (not prediction)
• Find rules of the form A ⇒ B where A and B are itemsets,

(i.e. sets of items) and A∩B=Ø.

• An item is a specific object which may either be part of an
itemset or not.

• Rules can related to any attribute; there is no target
variable (unsupervised as in Reinforcement Learning)

• Usually applied to binary data (market basket analysis);
Nominal variables can be transformed in the usual way
into one binary attribute per value. Each binary attribute
corresponds to an item with attri=1 ⇔ Item i is present.



© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

11

Association Rule Mining: Defs.

• T is the set of all possible items. When A,B⊆T, A∩B=Ø:
A⇒B is an association rule.

E.g. supermarket: Each distinct product is an item ∈ T.
Each transaction Tri corresponds to the products bought by
one shopper, and thus to a specific itemset. TD = { Tri} .

• Rules of the form A ⇒ B tell us about correlations
between itemsets, e.g. (milk,beer) ⇒ (diapers, babyfood)

• Rules are characterized by Support (how common is the
rule?), and Confidence (how well does rule A ⇒ B hold?)

• Algorithms to find all rules with given minimum Support
and Confidence exist, and are space- and time-eff icient.
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Support & Confidence

Itemset I is frequent ⇔ Support(I)  ≥ minimum support

Adding items: Support can only monotonically decrease
(P(I∪∪X)≤≤P(I)), since we add restrictions to the itemset.

⇒If an itemset I is frequent, all its subsets must also be
frequent. If any subset has lower support, then I cannot be
be frequent. This is an eff icient pruning criterion
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The Apriori Algorithm

Computes the set of all frequent itemsets.

Afterwards, compute all possible rules (partitions) of
frequent itemsets and output those with min. confidence.

Open-source Apriori implementation by C. Borgelt
http://fuzzy.cs.uni-magdeburg.de/~borgelt/apriori.html

Also available in WEKA, Associate Tab.

L1 = { set of frequent items (=frequent itemsets of size 1)}
for (k=1; Lk!=Ø; k++) {

Ck+1 = { A∪B | A,B ∈ Lk, |A∪B|=k+1,
∀ X⊂(A∪B) ⇒ X∈(∪Lk)}

Lk+1 = { C | C ∈Ck+1 && Support(C) > MinSupp }
}
return ∪ Lk;
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Rules from Weather Dataset (nominal)

Minimum Support = 0.3, Minimum Confidence = 0.7
• outlook=overcast ⇒⇒ play=yes

supp: 0.28, conf: 1.0, lift: 1.56
• temperature=cool ⇒⇒ humidity=normal

supp: 0.28, conf: 1.0, lift: 2.0
• humidity=normal, windy=false ⇒⇒ play=yes

supp: 0.28, conf: 1.0, lift: 1.56
• humidity=normal ⇒⇒ play=yes

supp: 0.43, conf: 0.86, lift: 1.33
• play=no ⇒⇒ humidity=high

supp: 0.28, conf: 0.8, lift: 1.6
...
For large datasets, outputs a large set of rules (>1000), so

understanding rules is more challenging than mining.
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Ex.: Computing Support and Confidence

• humidity=normal ⇒⇒ play=yes
su

pp
or

t=
6/

14
=

0.
43

confidence=6/7=0.86 (6x correct, 1x wrong)


