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Reinforcement Learning

Choose optimal actions (control strategies,  policies) based
on experience gained by acting in an environment.

• learning without a teacher
• learning by trial and error

Typical scenarios
• Mobile robot navigation, movement (leg control) and goal

learning, Game Playing (Backgammon, Othello), ...

Central problem
• Delayed reward (no immediate classification / feedback

available for most actions)
⇒ Temporal Credit Assignment Problem
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Example: Learning to Play Checkers

Initial formulation of learning task
• Task: play checkers
• Performance measure: percent of games won in world tournament
• Training experience: games played against itself
To be defined
• Exact type of knowledge to be learned (target concept)
• A representation for this target concept
• A learning mechanism
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Evaluation Function V

Possible evaluation function V for our checkers problem

• if b is a final board state and is won: V(b) = 100

• if b is a final board state and is lost: V(b) = -100

• if b is a final board state and is drawn: V(b) = 0

• otherwise (if b is not a final board state): V(b)=V(f(b)), where f(b) is the best
final board state reachable from b by optimal play ⇒ V(f(b)) ∈{ -100, 0, 100}

Non-operational definition! (i.e. we would need to know optimal play a priori to
determine f(b) and thus V(f(b)) – but this is what we are looking for!)

⇒⇒ Learn operational approximation V’  of ideal target V
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Representation of V'

Character ize board state via set of six features (very simple board
representation due to [Simon, 1963])

• x1 : number of black pieces on the board

• x2 : number of white pieces on the board

• x3 : number of black kings on the board

• x4 : number of white kings on the board

• x5 : number of black pieces threatened by white

• x6 : number of white pieces threatened by black

Represent V’ (b) as linear function of these 6 features:

V’(b) = w0 + w1x1 + w2x2 + w3x3 + w4x4 + w5x5 + w6x6

Learning problem: Learn values for coeff icients w0-6 so that V’ (b) gives high
values for good/promising board states, and low values for undesirable states.

More complex approximations are possible, e.g. all regression learners, neural
networks, rote learning, abitrary numeric function of board features etc..
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We still need...

Training examples for V: [b,Vtrain(b)] where b = board state, described by 6
features; Vtrain(b) = evaluation of b (ideally: value of optimal function V(b) – or
at least a feasible approximation)
An example: [(x1 = 3, x2 = 0, x3 = 1, x4 = 0, x5 = 0, x6 = 0), +100]

= final board state, won for black because x2 = 0
Function approximation (= learning) algorithm L for learning target function

V’ : B → R, given finite number of examples (b,Vtrain(b))

Problem: Correct evaluation V(b) is known only for final states, but is unknown
for all intermediate states!

Solution (simple form of Q-learning): Estimate training value Vtrain(b)) by using
the current estimate (V’ ) of the quality of b’s successor state (because that state
is one step closer to the final state, whose true evaluation is known):

• if b is a final board state and is won/lost/drawn: Vtrain(b) = +100/-100/0
• otherwise (i.e., if b is not a final board state): Vtrain(b) = V’ (successor(b))

Effect: Stepwise back-propagation of information (estimated values) from final
game states to intermediate states. Update after each game.
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Example: Learning Checkers
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Def.: Reinforcement Learning

An agent interacting with its
environment. The agent exists
in an environment described by
some set of possible states S. It
can perform any of a set of
possible actions A. Each time it
performs an action at in some
state st the agent receives a real-
valued reward rt that indicates
the immediate value of this
state-action transition.
This produces a sequences of
states si , actions ai , and
immediate rewards ri as shown
on the left. The agent's task is to
learn a control policy ππ: S→→ A
that maximizes the expected
sum of these rewards, with
future rewards discounted
exponentially by their delay.

V(s0)=
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Refined Definition RL & Solutions

Learn optimal policy ππ*: S→→A (i.e. policy that maximizes
Vπ(s) for all starting states s – not only for s0!)

ππ* = arg maxππ Vππ(s), ∀∀s

How to learn?
• If both r(s,a) and state transition function δ(s,a) are known:

Efficient solution via dynamic programming techniques.
• If not, more general approach is needed: Q-Learning

Problem: Cannot learn π* : S→A directly: Training data is
just sequence of immediate rewards r(si , ai).

⇒⇒Learn V*: S→→R instead, just like in Checkers example!
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Q-Learning

Optimal evaluation function V* : S→R

• Agent should prefer state s1 over state s2 whenever V*(s1) > V*(s2)

• Optimal action in state s is action a that maximizes immediate reward r(s,a) plus
V* of immediate successor state (discounted by γ):

ππ* (s) = argmaxa(r (s,a) + γγV*(δδ(s,a))) where state-transition function
δ(s,a) gives the state resulting from applying action a to state s

Problem: V*(s) can be usefully applied to make decisions only if reward function
r(s,a) and state transition function δ(s,a) are known – which they are not!

Solution: Learn evaluation function for pairs (state,action) instead:

Q: S×A→→R

Q(s,a)=r (s,a)+γγV*(δδ(s,a)) ⇔⇔  ππ*(s) = argmaxa Q(s,a)

substitute V*(s)=maxa'Q(s,a'): Q(s,a)=r(s,a)+γγmaxa'Q(δδ(s,a),a' )

Key idea: Iterative approximation, i.e. using current approximation Q' of
successor state to improve estimate of Q' in previous state.
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Example World

One optimal policyQ(s,a) values

r(s,a) immediate reward values Vπ*(s) values for γ=0.9
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Algorithm for learning Q

Representation of Q': large table with separate entry for each
<s,a> state-action pair.

For each s, a initialize the table entry Q’( s,a) to zero
Observe the current state s
Do forever:
• Select an action a and execute it
• Receive immediate reward r
• Observe the new state succ(s)=δ(s,a)
• Update the table entry for Q’( s,a) as follows:

Q’( s,a) = r + γ maxa’Q’( succ(s),a’)
• s=succ(s)
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One Step of Q-Learning



© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

14

TD-Gammon

Major Success for Reinforcement Learning

• Started with only basic rules of Backgammon

• Learned by playing against itself via Temporal-Difference Learning
(=generalization of Q-learning, using a neural network to approximate Q)

• Result: Excellent play at grandmaster level. In some cases, has even changed
expert's judgement of best move.

However, later shown to rely on Backgammon' s specific structure - much
simpler approaches work equally well. RL does not work so well for most
other games, e.g. Go and Othello. Hand-tuning V' works better in some
cases, e.g. the Checkers Champion Chinook (Schaeffer, 1997).


