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Bayesian Methods & Bayes Theorem

Bayesian M ethods provide the basis for probabilistic reasoning:

 Theoretical framework for madine leaning, clasgfication, knowledge
representation and analysis.

» Allowsto integrate uncertain and partial domain knowledge
» Direct modeling of uncertainty
» Easily handles noisy and incomplete data sets with MV's

One rnerstone of Bayesian Methods is Bayes Rule:
P(TD| f)P(f)
P(TD)

The probability of function/model f given training data TD is equal to the
probability of TD given f multiplied by the (prior) probability of h divided by
the (prior) probability of TD. All clasgfication methods can be seen as
estimating Bayes' Rule, with different techniquesto estimate P(TDIf).

P(f |TD) =
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Maximum Likelihood

Among all f from Concept Space CS, choose f which has highest probability given
training data TD. Thisisthe maximum a posteriori (M AP) mode!:

foer =argmaxP(f |TD) :argmaxP(rD| P(t) =argmaxP(TD | f)P(f)
focs focs P(TD) focs

In some cases, we can asume every f [ CS to be aqually probable. In that case,
the aove smplifiesto the maximum likelihood (ML) model:

fy. =argmaxP(TD | f)

fOCS

Example: Cancer diagnosis
Two hypotheses: cancer, — cancer (|CS|=2)
Diagnostic test for cancer with two outcomes. L1 =+, [ =—

Known prob.: P(cancer) = 0.008 P(-cancer) = 0.992
(sensitivity)  P(0J |cancer) = 0.98 P(L |cancer) = 0.02

P(L] | ~cancer)= 0.03 P(O | ~cancer)=  0.97 (specificity)
P(cance | ) = P(0J | cancer)P(cancer) =0.98 * 0.008 = 0.0078 (21%)

P(-cancer | )= P(IJ | = cancer)P(-cancer) =0.03 * 0.992 = 0.0298 (/9% ,MAP)
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Basic Probability For mulas

Product rule: probability of aconjunctian of eventsA andB (= A AND B)
P(AOB)=P(A|B)P(B) =P(B|A)P(A)

Sum rule: probability of adisjunctian of twoeventsA andB (= A OR B)
P(AOB) =P(A) +P(B)-P(ALOB)

Bayes Theorem :relatingposteriorandprior probabiliies

p(f [TD) =2 i(';é';(f)

Theorem of total probability :if eventsA,,...,A  aremutuallyexclusive

with iP(Ai) =10 P(B) = Z P(B|A)P(A)
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Bayes Optimal Classifier

So far, we have seached for the best f L1 CS. However, it is possble to do better
by combining all functions/modelsin CS, weighted by posterior probabilities:

Bayes, ;. =argmax Z P(Cl, | f)P(f, |TD)
CIjEICIass f.0CS
where Classis the set of possble classs, TD = training data, CS = concept space.
Thisisthe Bayes Optimal Classifier.

Advantages

o Optimality: No ather classficaion method with same CS and same prior
knowledge can outperform this method (on average). This method maximizes
the probability that the new instance is classified correctly, given the avail able
data TD, concept space CS and posterior prob. over all the hypothesesf.

* Predictions correspond to afunction/model not in CS — more general than CS!
Disadvantages

* Needsto sumover al possble functionsf. Very costly and often intradable.

» Probabiliti es are usually unknown, and some of them are very hard to estimate.
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Gibbs Algorithm & Naive Bayes

Gibbs Algorithm is a more efficient but less optimal classfier. Under certain
conditions it has at most twice the error rate of the optimal Bayes classfier.
However, it is gill very inefficient.

Gibbs Algorithm

1. Choose afunction f from CS at random, according to posterior probability
distribution over CS (i.e. P(f [TD))

2. Usef to predict the dasgfication of next instance X.

A very efficient classfier is obtained by assuming the dtributes to be
conditionally independent (P(A||A)=P(A) for Ui ,j). Thisis Naive Bayes:

Bayes,, .= argmaxP(CIj)rl P(a |Cl))
Oi

CIJ- [Class

P(Cl,) and P(a|Cl) can be efficiently estimated from training data TD by
counting. Thisis a commonly used classfier in madine leaning, and works
reasonably well even when the conditional independence asumption is
violated.
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Example: Weather dataset

Classify weather dataset with Naive Bayes Outlook| T | H |Windy|Play?
» Estimate P(Cl)): P(yes)=9/14, P(no)=5/14 overcast |64°F | 65% | true | yes

0 0
. Estimate P(a|Cl), i.e. probability of attribute i [/eELIZELIH | ue L yes

having value g, given classof Cl.: overcest |BI°F | 75% | Talse | yes
9 4.9 I overcast |83°F | 86% | false | yes

Play? Play? rainy |68°F|80% | false | yes

Outlook| yes no Windy | yes no rainy |70°F|96% | false | yes
overcest| 4 |0 true | 3 |3 rainy |75°F|80% | false | yes
rainy | 3 |2 fase | 6 | 2 rainy [65°F|70% | true | no
sunry | 2 |3 rainy |[71°F|91% | true | no
P(outlook=overcast | yes)=4/9 P(w.=t | yes)=3/9 sunny |[69°F|70% | false | yes
P(outlook=rainy  |yes)=3/9 P(w.=f |yes)=6/9 sunny |75°F | 70% | true | yes
_ B sunny [72°F|95% | false | no
P(outlook=sunny | yes)= 2/9 sunny [80°F|90% | true | no
P(outlook=overcast| no) = 0/5 P(w.=t|no) =3/5 sunny |85°F|85% | false | no

P(outlook=rainy |no) =2/5 P(w.=f|no)=2/5
P(outlook=sunny |no) = 3/5

Problem: Estimates may be zeo [1 P(no | outlook=overcast) would always be 0.
[0 Laplace arrection: Use (a+1)/(b+2) instead of ab, e.g. 1/7 instead of O/5.
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e For

Example: Weather dataset (2)

guantitative

/[ numericd

variables,

probabilities cannot be determined by counting.
Probability density functions must be defined.
Common assumption: Vaues are normally
distributed. Then, arithmetic mean and standard
deviation define a norma probability density

function as foll ows;

P(A =x|Cl,) =

\ 21 6°

1

=

(X—p)?

where 1 and 62 are dhosen depending on Cl; and A,
E.g. for P(temp.=x | no) use u=74.6 and 0%=62.3;
for P(hum.=x | yes) use p=79.1 and 06°=104.4 etc..

Play?
Temp.| yeS no
M 73.0|74.6
o |38.0/62.3

Play?
Hum Y&S  no
U | 791 |86.2
0° |104.4|94.7
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Outlook| T H |Windy|Play?
overcast [64°F|65% | true | yes
rainy |68°F|80% | false | yes
sunny [69°F|70% | false | yes
rainy |70°F|96% | false | yes
overcast [72°F|90% | true | yes
sunny [75°F|70% | true | yes
rainy |75°F|80% | false | yes
overcast |81°F| 75% | false | yes
overcast |83°F|86% | false | yes
rainy |65°F|70% | true | no
rainy |71°F|{91% | true | no
sunny [72°F|95% | false | no
sunny [80°F|{90% | true | no
sunny [85°F|85% | false | no




Bayesian Belief Networks

Nalve Bayes: Asaumes conditiona independence of al attribute. If this is true,
then it outputs the optimal Bayes classification. However, in many cases this

assumption isoverly restrictive.

[1 Bayesian Networks: Allow arbitrary conditional dependence. Dependency
information can be learned from training data, or specified as background

knowledge. Usually visualized as directed acyclic graph (DAG)

E.g. given aburglary, what is the prob.

that John cdl s?

P(J|B)=?

P(A|B) = P(B)P(-E)(0.94) + P(B)P(E)(0.95)
P(A|B) =1(0.998(0.94) +1(0.002)(0.95)
P(A|B)=0.94

P(J | B) = P(A|B)(0.9) + P(~A| B)(0.05)

:((;J8|SB) =(0.94)(0.9) +(0.06)(0.05) g E‘é’

Exact computation of complex queriesis NP-hard(!)

meTA|e
=
=
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Association Rule Mining

Different lear ning methodology (not prediction)

e Findrulesof theform A [ Bwhere A and B are itemsets,
(i.e. sets of items) and An B=@.

e Anitem is aspecific olject which may either be part of an
Itemset or nat.

 Rules can related to any attribute; there is no target
variable (unsupervised as in Reinforcement Learning)

o Usually applied to hinary data (market basket analysis);
Nomina variables can be transformed in the usual way
Into ore binary attribute per value. Eadh hinary attribute
corresponds to an item with attr,=1 < ltem1 is present.
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Association Rule Mining: Defs.

T Isthe set of all posgble items. When A,BLOT, AnB=@:
ALl B Isan associationrule.

E.g. supermarket: Each dstinct product is an item O T.
Ead transaction Tr; corresponds to the products bougft by
one shopper, andthus to a spedfic itemset. TD ={Tr;}.

Rules of the foom A [ B tel us abou correlations
between itemseats, e.g. (milk,beer) [J (diapers, babyfood)
Rules are dharaderized by Support (how common is the
rule?, and Confidence (how well doesrule A 1 B hald?)

Algorithms to find all rules with gven minimum Support
and Confidence exist, and are space and time-efficient.
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Support & Confidence

Support(AL B)=P(ALB) [P(A)for Borgeltsimplementton]

Confidence(ALl B) = P(ALB)
P(A)
_ 1 _ . _ P(AUB)
P(l) = |TD|T|’;D||;|(TH =1 Lift(AL B) P(A)P(B)

ltemset | isfrequent = Support(l) = minimum support

Adding items. Support can only monotonically decrease
(P(1OX)<P(l)), since we add restrictionsto the itemset.

I If an itemset | is frequent, all its subsets must also be
frequent. If any subset has lower suppat, then | canna be
be frequent. Thisis an efficient pruning criterion
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TheApriori Algorithm

Computesthe set of all frequent itemsets.

L, = {set of frequent items (=frequent itemsets of size 1)}
for (k=1; L, !=0; k++) {
C..={AUB|ABUOL,, AUB=k+1,
O XOAOB) O XO(OL)}
L., ={C|CUC,,; && Support(C) > MinSupp }
}

return LJ L;

Afterwards, compute all possible rules (partitions) of
frequent itemsets and output those with min. confidence.
Open-source Apriori implementation byC. Borgelt
http://fuzzy.cs.uni-magdeburg.de/~borgelt/apriori.html
Also available in WEKA , Asgciate Tab.
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Rules from Weather Dataset (nominal)

Minimum Support = 0.3, Minimum Confidence = 0.7
e outlook=overcast [1 play=yes
supp 0.28,conf: 1.0,lift: 1.56
e temperature=cool [1 humidity=normal
supp 0.28,conf: 1.0,lift: 2.0
e humidity=normal, windy=false [0 play=yes
supp 0.28,conf: 1.0,lift: 1.56
e humidity=normal [0 play=yes
supp 0.43,conf: 0.86,lift: 1.33
e play=no 0 humidity=high
supp 0.28,conf: 0.8,lift: 1.6

For large datasets, outputs alarge set of rules (>1000), so
under standing rulesis more challenging than mining.
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Ex.. Computing Support and Confidence

e humidity=normal [0 play=yes
confidence=6/7=0.86(6x (correct, 1xwrong)
' I

=6/14=0.43

suppat

Outlook  Temp. Humidity; Windy | CLASS
SUNmy hot hugh o false 1 Don't Play
SUIITY hot hugh | true . Don't Play
overcast hot ugh - false 1 Play
rain mild hugh . false | Play
> Tan cool normal——false——» Play
rain cool normal——ime— Don't Play
— overcast  cool nonma——trwe—— Play
SUIITY mald hugh false Don't Play
< sunny cool normal fafse > Play
— Tl mld nornmal——#atse— Play
|, sunimy muld norm:l trore > Play
overcast muld ugh true Play
—» overcast hot noriml fafse > Play
rain mild hugh true Don't Play
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