How to Make Stacking Better and Faster
While Also Taking Care of an Unknown Weakness

Alexander K. Seewald

ALEX QSEEWALD.AT ; ALEXSEE @QAI.UNIVIE.AC.AT

Austrian Research Institute for Artificial Intelligence, Schottengasse 3, A-1010 Wien, Austria

Abstract

We investigated performance differences be-
tween multi-class and two-class datasets for
ensemble learning schemes. We were sur-
prised to find that Stacking, the best-known
such scheme, performs worse on multi-class
datasets when using class probability distri-
butions as meta-level data. In this paper we
will present results concerning this hereto-
fore unknown weakness of Stacking. In ad-
dition we will present a new variant of Stack-
ing, using meta-learner MLR, which is able
to compensate for this weakness, improv-
ing Stacking significantly on almost half of
our multi-class datasets. Two other related
meta-learners could also be improved using
the same idea. The dimensionality of the
meta-data set is reduced by a factor equal to
the number of classes, which leads to faster
learning. In comparison to other ensemble
learning methods this improves Stacking’s
lead further, making it the most successful
system by a variety of measures.

1. Introduction

When faced with the decision “Which algorithm will
be most accurate on my classification problem?”, the
predominant approach is to estimate the accuracy of
the candidate algorithms on the problem and select the
one that appears to be most accurate. Schaffer (1993)
has investigated this approach in a small study with
three learning algorithms on five UCT datasets. His
conclusions are that on the one hand this procedure is
on average better than working with a single learning
algorithm, but, on the other hand, the cross-validation
procedure often picks the wrong base algorithm on in-
dividual problems. This problem is expected to be-
come more severe with an increasing number of classi-
fiers.

As a cross-validation basically computes a prediction
for each example in the training set, it was soon real-
ized that this information could be used in more elab-
orate ways than simply counting the number of correct
and incorrect predictions. One such ensemble learning
method or meta-classification scheme is the family of
stacking algorithms (Wolpert, 1992). The basic idea of
Stacking is to use the predictions of the original classi-
fiers as attributes in a new training set that keeps the
original class labels.

A straightforward extension of this approach is using
class probability distributions of the original classi-
fiers! which convey not only prediction information,
but also confidence for all classes. This approach was
evaluated and found to be superior to Stacking with
predictions in (Ting & Witten, 1999), provided multi-
response linear regression (MLR) is used as meta clas-
sifier. Qur variant StackingC is based on this extension.

We have investigated the performance of four com-
mon meta-classification schemes, including the men-
tioned Stacking variant, relative to multi-class vs. two-
class datasets, in a ranking. We found no signifi-
cant differences for Grading and Voting? — however, the
mentioned Stacking variant showed a significant perfor-
mance degradation for multi-class datasets. This per-
formance degradation is also quite apparent by other
accuracy-based measures. We will present these re-
sults and a variant of stacking which does not show
this performance degradation.

First, we will present the basic concept behind Stack-
ing and show how it can be extended towards Stack-
ingC for the meta-learner MLR. Then we will describe
the experimental setup, base classifiers and meta-
classification schemes used and investigate empirically
the claims that Stacking performs worse on multi-class
datasets. Afterwards we will compare StackingC to

Stacking in more detail, considering significant differ-

"Every prediction is replaced by a vector of probabili-
ties, one for each class.
2X-Valseems to be worse on two-class datasets.

Attrs Cl. Classtifier: Classifiers Classifiern class
a b c a b c a b c =a?
AttrVec: a Piai Pinn Pra Prat Pop1 Pra Pna1 Pnw Pwna 1
AttrVec, b Piao Pz P2 | Poaz Pope Poe Pna2 Pnp2 Pneo 0
AttrVecs b Piaz Pipz Pres | Paaz Papz Paes Pnas Pnpz Pnes 0
AttrVecs c Piaio Pipa Piea | Poaa Popa Paea Pnas Pnpa Pnea 0
AttrVecy a Pl,an Pl,bn Pl,cn P2,an P2,bn P2,cn PN,an PN,bn PN,cn 1
(a) original training set (c) meta training set for class a, Stacking with MLR
Classi fier; Classifier; | Classifiers Classifierny | class
a b c a a a =a?
Pia1 =090 Pipn =005 P =0.05 Pi a1 P> a1 Pn a1 1
Piax=015 Pipo=0.70 P;. =0.15 Pi a2 Ps a2 Pn a2 0
P¢7a3 = 010 Pi7b3 = 080 Pi,cS = 010 P17a3 P27a3 PN,aB 0
Pia1 =020 P;pa =020 P =0.60 Pias Ps a4 Pn,aa 0
Pian =080 Pipy=010 P, ., =0.10 Ptan Pyan Px.an 1

(b) sample class probability distribution

(d) meta training set for class a, StackingC with MLR

Figure 1. lllustration of Stacking and StackingC on a dataset with three classes (a, b and c), n examples and N base

classifiers. P; ji refers to the probability given by base classifier 1 for class j on example number k&

ences by dataset, influence of number of classes and
shortly investigate the claim of faster learning for
StackingC. At last we will discuss results about apply-
ing the same basic idea to other meta-classifiers and
point towards interesting research directions for the
future.

2. StackingC

The main idea behind stacking is using the output
from a set of level-0 (=base) classifiers, estimated via
cross-validation, to learn a level-1 (=meta) classifier
which gives the final prediction.

As Ting & Witten (1999) propose, we use Stacking with
multi-response linear regression (MLR) as level-1 clas-
sifier. Basically, MLR learns a linear regression func-
tion for each class which predicts degree of confidence
in class membership and can, after normalization, be
interpreted as class probability. Other level-1 classi-
fiers do not usually learn a distinct model for each
class, but instead learn a single model for all classes at
once, e.g. a decision tree.

During prediction, the base classifiers are queried for
their class probability distributions which are then
used as input for the regression models (one for each
class). The output of the linear models is renormalized
to yield a proper class probability distribution.

Figure 1 shows an example with three classes (a, b and
¢), n examples and N base classifiers. 1(a) shows the

original training set with its attribute vectors and class
values.

Figure 1(b) shows how a class probability distribution
of one sensible classifier may look like. The maximum
probabilities are shown in talics and denote the classes
which would be predicted for each example. There is
one such set of class probability distributions for each
base classifier.

Figure 1(c) shows the meta training set for Stacking
which is used to learn a linear regression function to
predict the probability of class == a. We denote
P ;1 to signify the probability given by base classi-
fier 7 for class j on example number k. The classes are
mapped to an indicator variable such that only class
a is mapped to 1 and all other classes to 0. In our ex-
ample there are of course two other such training sets
for class b and ¢ which differ only in the last column
and are thus not shown.

The proposed variant, StackingC, differs in these points:
for each linear model associated with a specific class,
only the partial class probability distribution which
deals with this very class is used during training
and testing. While stacking uses probabilities for all
classes and from all component classifiers for each lin-
ear model, StackingC uses only the class probabilities
associated with the class which we want our linear
model to predict.3

3We also switched off the internal feature subset selec-
tion in MLR since that seemed to slightly improve perfor-

Figure 1(d) shows the corresponding meta training set
for StackingC which consists only of those columns from
the original meta training set which are concerned with
class=a; i.e. Pja for all © and k. While the meta
training sets for Stacking’s meta-classifier differ only in
the last attribute (the class indicator variable), those
for StackingC have less attributes by a factor equal to
the number of classes and also have no common at-
tributes. Out of necessity, this leads to more diverse
linear models which we believe to be one mechanism
why it outperforms Stacking. Another one may sim-
ply be that with less attributes, the learning problem
becomes easier to solve, as long as only irrelevant in-
formation is removed.

As can be easily seen, this modification should not
change the performance for two-class datasets signifi-
cantly. Since the sum of each class probability distri-
bution has to be one, the probability of one class is
one minus the probability of the other class, so one of
these values is sufficient to encode the complete infor-
mation* Thus we would expect two-class datasets to
offer equally good performance under this modifica-
tion, but train slightly faster® because of the inherent
dimensionality reduction for meta-data.

3. Experimental Setup

We implemented StackingC in Java within the Waikato
Environment for Knowledge Analysis (WEKAS). All
other algorithms at the base and meta-level were al-
ready available within WEKA.

For an empirical evaluation we chose twenty-six
datasets from the UCI Machine Learning Repository
(Blake & Merz, 1998), shown in Table 1. These
datasets include fourteen multi-class and twelve two-
class problems. Reported accuracy estimates are the
average of ten ten-fold stratified cross validations un-
less otherwise noted. Significant differences were eval-
uated by a t-test with significance level of 99%.7

mance — possibly because all features from the focussed
meta-level data are already relevant.

YA linear model is free to use either the one attribute
with a positive weight or the other with a negative weight,
using appropriate constant terms.

5The training costs for the base-classifiers are of course
unchanged.

6The Java source code of WEKA has been made avail-
able at www.cs.waikato.ac.nz

"The used t-test has been shown to have a high type
I error e.g. in (Dietterich, 1998). Although we obtained
similar results using a single ten-fold cross-validation and
x? test after McNemar — which should have a low type I
error according to the same paper — our reported significant
differences may still be too optimistic.

Table 1. The used datasets with number of classes and ex-
amples, discrete and continuous attributes, baseline accu-
racy (%) and entropy in bits per example (Kononenko &
Bratko, 1991).

Dataset cl Inst | disc | cont bl I
audiology 24 226 69 0| 25.22 | 3.51
autos 7 205 10 16 | 32.68 | 2.29
balance-scale 3 625 0 4 | 45.76 | 1.32
breast-cancer 2 286 10 0 | 70.28 | 0.88
breast-w 2 699 0 9 | 65.52 | 0.93
colic 2 368 16 7 | 63.04 | 0.95
credit-a 2 690 9 6 | 55.51 | 0.99
credit-g 2 | 1000 13 7 | 70.00 | 0.88
diabetes 2 768 0 8 | 65.10 | 0.93
glass 7 214 0 9 | 35.51 | 2.19
heart-c 5 303 7 6 | 54.46 | 1.01
heart-h 5 294 7 6 | 63.95 | 0.96
heart-statlog 2 270 0 13 | 55.56 | 0.99
hepatitis 2 155 13 6 | 79.35 | 0.74
ionosphere 2 351 0 34 | 64.10 | 0.94
iris 3 150 0 4 | 33.33 | 1.58
labor 2 57 8 8 | 64.91 | 0.94
lymph 4 148 15 3| 54.73 | 1.24
primary-t. 22 339 17 0 | 24.78 | 3.68
segment 7 | 2310 0 19 | 14.29 | 2.81
sonar 2 208 0 60 | 53.37 | 1.00
soybean 19 683 35 0 | 13.47 | 3.84
vehicle 4 846 0 18 | 25.41 | 2.00
vote 2 435 16 0 | 61.38 | 0.96
vowel 11 990 3 10 9.09 | 3.46
700 7 101 16 2 | 40.59 | 2.41

We chose four meta-classification schemes, including
Stacking.

e Grading is the implementation of the grading algo-
rithm evaluated in (Seewald & Fiirnkranz, 2001).
It uses the instance-based classifier IBk with ten
nearest neighbors as meta-level classifier.

e X-Val chooses the best base classifier on each fold
by an internal ten-fold CV on the training data.
This is just Selection by Crossvalidation which we
mentioned in the beginning.

e Voting is a straight-forward adaptation of voting
for distribution classifiers. Instead of giving its
entire vote to the class it considers to be most
likely, each classifier is allowed to split its vote
according to the base classifier’s estimate of the
class probability distribution for the example. Tt
is mainly included as a benchmark of the perfor-
mance that could be obtained without resorting
to the expensive CV of every other algorithm.

e Stacking is the stacking algorithm as implemented

in WEKA, which follows (Ting & Witten, 1999).

Table 2. This table shows the performance of Stacking with different meta-learners by four measures which are described
in the text. Performance on multi-class and two-class datasets is shown separately, in two adjacent columns. All data is

based on a single ten-fold cross-validation.

DecisionTable J48 KernelDensity KStar MLR NaiveBayes

2C1 | mulCl 2C1 | mulCl 2C1 | mulCl 2C1 | mulCl 2C1 | mulCl 2C1 | mulCl
Avg.acc. 0.842 0.709 | 0.839 0.827 | 0.815 0.828 | 0.816 0.810 | 0.856 0.826 | 0.852 0.825
by Accpest 0.974 0.798 | 0.971 0.958 | 0.939 0.960 | 0.943 0.937 | 0.990 0.963 | 0.987 0.950
by Accxva 0.988 0.809 | 0.985 0.971 | 0.953 0.973 | 0.956 0.949 | 1.005 0.976 | 1.001 0.963
by Accvoting 0.987 0.810 | 0.983 0.972 | 0.951 0.974 | 0.955 0.950 | 1.003 0.977 | 0.999 0.964

It constructs the meta dataset by adding entire
class probability distributions instead of only the
most likely class. Following (Ting & Witten,
1999), we also used MLR as the level 1 learner.

All meta-classification schemes used the following six
base learners, which were chosen to cover a variety of
different biases.

e DecisionTable: a decision table learner.
e 148: a Java port of C4.5 Release 8 (Quinlan, 1993)

e NaiveBayes: the Naive Bayes classifier using mul-
tiple kernel density estimation for continuous at-
tributes.

e KernelDensity: a simple kernel density classifier.

e MLR: a multi-class learner which tries to separate
each class from all other classes by linear regres-
sion (multi-response linear regression)

e KStar: the K* instance-based learner (Cleary &
Trigg, 1995)

All algorithms are implemented in WEKA Release
3.1.8. Each of them returns a class probability distri-
bution, i.e., they do not predict a single class, but give
probability estimates for each possible class. Param-
eters for learning schemes which have not been men-
tioned were left at their default values.

4. Multi-class vs. two-class datasets

In this section, we present results concerning the infe-
rior performance of Stacking with MLR on multi-class
datasets and show that all but one meta-learner also
suffer from the same weakness.

This weakness is apparent by a variety of measures. By
average accuracy®, Stacking with MLR performs slightly
worse on multi-class datasets. However, since average

8See Table 3 and Table 2.

accuracy 1s not a reliable measure because of the dif-
ferent baselines involved, we investigated three differ-

. . Acc]
ent ways of normalizating the accuracy (Wg,
€s
AceStacking 10
Acevoting
mean'' of these accuracy ratios, both for two-class and

multi-class datasets separately. Detailed results can
be found in Table 2, column MLR. All these measures
agree that Stacking performs about 3% worse on multi-
class datasets. A ranking of all meta-classification
schemes based on significant differences also shows this
weakness, see Table 5. While the latter may be too
optimistic due to the used t-test having a high type-1
error, the overall agreement of these different measures
seems to make this weakness quite obvious.

AccStacking
Accxvar

) and computed the geometric

When using all available base learners also as meta-
learners for Stacking, 1.e. running six experiments
which use the same set of base learners but differ-
ent meta-learners, we found that in all but one case'?,
again for average accuracy and all three normaliza-
tion methods, the performance on multi-class datasets
was worse than on two-class datasets. So we conclude
that this may be a general weakness for Stacking with
probability distributions as meta-level data, i.e. of the

extension proposed by Ting and Witten (1999).

There are three reasonable explanations: Firstly, since
the number of classes is proportional to the number
of features in the meta-level dataset, a higher number
of classes makes learning harder simply because there
are more features which have to be considered — i.e.
the curse of dimensionality. Secondly, since Stacking
with MLR as meta-learner uses almost the same meta-
level data to train each linear model (i.e. only the

% AcChest = accuracy of best base classifier by hindsight
according to X-Val, i.e. estimated on the complete dataset.

0% val and Voting are the accuracies of resp.
classification schemes

meta-

" For ratio values, the geometric mean is more appropri-
ate.

">When using KernelDensity as meta-learner, the perfor-
mance on multi-class datasets is indeed better. However,
all measures also agree that Stacking with KernelDensity per-
forms worse than with MLR.

class indicator feature is different), a higher number of
classes may decrease the diversity among those linear
models. Thirdly, the base classifiers themselves may
be susceptible to the curse of dimensionality and pass
this susceptibility on to Stacking.

The previous result which hints at a general weakness
for Stacking with probability distributions supports the
first explanation and discounts the second, since e.g.
J48 does not learn one model per class but one model
for all classes at once and thus decreased diversity of
class models cannot be used as explanationn.

If the first explanation is therefore correct, Stack-
ing with predictions as base data should not suffer
from this weakness. Accordingly, our experiments
show that, when normalizing with Accyoting, there
are three meta-learners which perform better on multi-
class datasets and three meta-learners which perform
better on two-class datasets — as would be expected by
chance. The observed differences in performance are
at most 1%. Average accuracy does not agree with this

conclusion, but it is an unreliable indicator at best.

When we normalize with Accxva or Accpest, we also
get similar conflicting results. However, according to
our ranking (see Table 5), X-Val performs worse on two-
class datasets while Voting offers more balanced results.
Thus, when using Accxy 4 or related measure Accpest
for normalization, this leads to an systematic overes-
timation of the performance on two-class datasets and
thus to a relative underestimation of the performance
on multi-class datasets.

So we still conclude that Stacking with predictions
does not seem to suffer from the mentioned weakness.
This also discounts the third explanation. Thus, even
though the base classifiers may still perform worse on
multi-class problems, Stacking with predictions seems
to be able to compensate for this bias — as is StackingC
which we will see shortly.

5. StackingC versus Stacking

In this section we will compare StackingC and Stacking
in detail, focussing on performance and runtime dif-
ferences. Table 3 shows detailed accuracies, standard
deviations and significant differences on all datasets
and also average accuracy on two-class and multi-class
datasets respectively. The last measure has to be in-
terpreted carefully, since it combines problems with

Table 3. This table shows accuracies + standard deviations
of Stacking and StackingC. RRT shows %Runtime, ie.
the runtime ratio, greater than one where StackingC is faster.
Diff shows + and - for significant wins resp. losses of Stack-
ingC to Stacking and is empty in case of no significant differ-

ences.
DS Cl. RRT | stackingC Stacking Diff
aud 24 2.86 | 82.17% | 76.02% +
aut 7 2.00 | 84.20% | 82.20% +
b-s 3 1.00 | 90.22% | 89.50% +
b-c 2 1.97 | 72.13% | 72.06%
b-w 2 1.08 | 97.38% | 97.41%
col 2 2.21 | 84.70% | 84.78%
c-a 2| 2.30 | 86.22% | 86.09%
g 2| 1.65 | 76.24% | 76.17%
dia 2 1.15 | 76.48% | 76.32%
gla 7| 1.67 | 77.20% | 76.45%
h-c) 1.25 | 84.09% | 84.26%
h-h) 1.27 | 85.10% | 85.14%
h-s 2 1.67 | 84.30% | 84.04%
hep 2 1.13 | 82.97% | 83.29%
ion 2 1.23 | 92.82% | 92.82%
iri 3 0.90 | 95.40% | 94.93%
lab 2 1.08 | 90.88% | 91.58%
lym 4 1.19 | 81.82% | 80.20% +
p-t 22 | 17.73 | 47.23% | 42.63% +
seg 7 2.00 | 98.10% | 98.08%
son 2 1.88 | 85.63% | 85.58%
soy 19 2.80 | 93.47% | 92.90%
veh 4 1.72 | 79.36% | 79.89%
vot 2 1.81 | 96.34% | 96.32%
vow 11 2.64 | 99.07% | 99.00%
700 7 2.37 | 96.24% | 93.96% +
Avg(2Cl) 2 1.60 | 85.51% | 85.54%
Avg(mCl) | 9.14 2.96 | 85.26% | 83.94% | 6+

different baselines. Also, the ratio between runtimes'?

is given.

Summarizing the table, StackingC wins six times

against Stacking, always on multi-class datasets, and
never loses. In all but one case, StackingC is faster —
on average it is 2.3 times faster. StackingC also im-

proves on accuracy by an average of 3.75% for multi-

'3 This ratio has to be interpreted carefully, since the
experiments were run on a heterogenous cluster of linux
and sun machines with a dynamic mapping of tasks to
machines. However, since all tasks were run ten times,
each time on a different machine, we still consider these to
be rough but useful estimates.

Table 4. This table shows the improvement of StackingC over
AccgtackingC
Accstacking
M5Prime. All data here is based on a single ten-fold cross-

validation.

Stacking as for meta-learners MLR, LWR and

Meta-learner | multi-class | two-class
MLR 1.0375 0.9983
LWR 1.0256 0.9997
M5Prime 1.0070 1.0000

Improvement of StackingC over Stacking
115 T T

Accs‘(;_.l Accg,
=}
o
T
I

0.95 L L L L
0 5 10 15 20 25

numClasses

Figure 2. This figure shows the improvement of StackingC
AcCsiackingC
AccStacking
classes. The solid line shows the obtained least squares fit

over Stacking as as a function of the number of
for a one-dimensional linear model while the dotted line
indicates a ratio of 1.0. Above the latter line, StackingC is
better than Stacking and vice versa.

class datasets; the performance difference for two-class
datasets is negligible, see Table 4.

We would also expect StackingC to improve on Stack-
ing more, if the number of classes is increased. This
is usually the case, see Figure 2. The statistical cor-
relation coefficient for the shown relation is 0.8. Our
figure also shows the fitted regression line which has a
mean squared error of 2.59E-04.

Concluding, StackingC improves on Stacking in terms
of significant accuracy differences, accuracy ratios and
runtime. These improvements are more evident for
multi-class datasets and have some tendency to be-
come more pronounced as the number of classes in-
creases. StackingC also resolves the weakness of Stack-
ing in the extension proposed by Ting and Witten
(1999) and offers balanced performance on two-class
and multi-class datasets.

6. Discussion

To find out whether or not our approach is also able
to improve other meta-learners besides MLR, we con-
ducted additional experiments.

Essentially, we tried two different approaches. One was
to use two other regression learners instead of MLR to
approximate the class membership functions for each
class separately. This worked quite well, see Table 4.
MLR is the meta-learner which we previously used for
StackingC, but we used only the first cross-validation in
order to enable a fair comparison to the other learn-
ers. LWR stands for locally weighted regression'*and
M5Prime stands for a model tree learner. Both learn-
ers are available within WEKA. In terms of absolute
performance over all datasets, LWR is slightly better
than MLR and M5Prime 1s slightly worse.

The second approach, namely modifying common ma-
chine learning algorithms'® to use only partial prob-
ability distributions during prediction, yielded catas-
trophically bad results on some datasets.

These results indicate that the source of StackingC’s
improvement may lie more in the diversity of class
models than in the dimensionality reduction, although
both play a key role (see also Section 2, paragraph 8).
Using one-against-all class binarization and regression
learners seems to be essential. So we intend to look
into other binarization methods in the future.

Another interesting venue for future research may be
to find out why X-Val performs worse on two-class
datasets as our ranking indicates. A tentative expla-
nation may be that the base classifiers perform better
on two-class datasets. Thus, their accuracies are more
similar on these datasets, increasing the probability
that X-Val will choose a suboptimal learner by its in-
ternal CV. Further research is needed to find out if
this is indeed the case. This may have far-reaching
consequences because of the ubiquitousness of X-Val
as a method to choose the best classifier throughout
the machine learning community.

7. Related Research

Chan and Stolfo (1995) propose the use of arbiters
and combiners. A combiner is more or less identical
to stacking. Chan and Stolfo (1995) also investigate
a related form, which they call an attribute-combiner.
In this architecture, the original attributes are not re-
placed with the class predictions, but instead they are
added to them. As Schaffer (1994) shows in his pa-

MWe used parameter -W 1 for inverse kernels %

"5 NaiveBayes, KStar, IBk and KernelDensity.

Table 5. This table shows a ranking of all meta-classification schemes with Stacking and StackingC. We are mostly
concerned with the differences between Stacking and StackingC on multi-class datasets. Separate rankings are given on

multi-class and two-class datasets. Ranks are given as Wins/Losses with the wins counting for the algorithm in the row

(Scheme).

Scheme X-Val Grading Stacking StackingC Voting

X-Val on multi-class ds. 0/0 3/3 3/3 2/6 5/5
Grading on multi-class ds. 3/3 0/0 5/4 1/5 3/2
Stacking on multi-class ds. 3/3 4/5 0/0 0/6 4/5
StackingC on multi-class ds. 6/2 5/1 6/0 0/0 5/3
Voting on multi-class ds. 5/5 2/3 5/4 3/5 0/0
X-Val on two-class ds. 0/0 2/3 0/3 0/3 2/4
Grading on two-class ds. 3/2 0/0 2/3 2/4 1/0
Stacking on two-class ds. 3/0 3/2 0/0 0/0 3/2
StackingC on two-class ds. 3/0 4/2 0/0 0/0 4/2
Voting on two-class ds. 4/2 0/1 2/3 2/4 0/0

per about bi-level stacking, this may result in worse
performance.

Cascading by Gama and Brazdil (2000) is a related
variant to Stacking where the classifiers are applied in
sequence and there is no dedicated level 1 classifier.
Each base classifier, when applied to the data, adds his
class probability distribution to the data and returns
an augmented dataset, which is to be used by the next
base classifier. Thus, the order in which the classifiers
are executed becomes important. Cascading does not
use an internal cross-validation like most other meta-
classification schemes and is therefore claimed to be
at least three times faster than Stacking. On the other
hand in Stacking the classifier order is not important,
thereby reducing the degrees of freedom and minimiz-
ing chances for overfitting. Furthermore, cascading
increases the dimensionality of the dataset with each
step whereas Stacking’s meta-dataset has a dimension-
ality which is independent of the dimensionality of the
dataset, 1.e. the number of base classifiers multiplied
with the number of classes.

Todorovski and Dzeroski (2000) introduce a novel
method to combine multiple models. Instead of
directly predicting the final class as all combin-
ing schemes we considered, their meta-learner MDT,
based on C4.5, specifies which model to use for each
example based on statistical and information theoretic
measures computed from the class probability distri-
bution. While their approach may make the combining
scheme more comprehensible by learning an explicit
decision tree decision tree, it is unclear whether this
leads to better insight as well. Stacking and StackingC
using MLR as meta-learner also allow to determine rel-
ative importance of base learners per class, simply by

inspecting the weights of meta-level attributes after
training — this has e.g. been done by Ting and Witten
(1999).

Skalak (1997) includes an excellent overview about
methods for constructing classifier ensembles. His
other main contribution consists of investigating en-
sembles of coarse instance-based classifiers storing only
a few prototypes per class.

Merz (1999) studies the use of correspondence anal-
ysis and lazy learning to combine classifiers in a
stacking-like setting.
SCANN, to two Stacking-variants with NaiveBayes resp.

He compares his approach,

a backpropagation-trained neural network as meta-
learner. MLR was not considered as meta-learner. Ac-
cording to experiments with synthetic data, his ap-
proach is equivalent to plurality vote if the models
make uncorrelated errors. However, in practice this
is seldom the case. Moreover, his approach is limited
to using predictions as meta-level data and would fail
for the class probability distributions which we use.
Still, correspondence analysis as a means of less static
dimensionality reduction of stacking meta-level data
may have its merits.

Ting and Witten (1999) deal with the type of general-
izer suitable to derive the higher-level model and the
kind of attributes it should use as input. Using prob-
ability distributions as they propose instead of just
predictions is essential to our variant StackingC. They
also investigated the usefulness of non-negativity con-
straints for feature weights within linear models, but
found that it is not essential to get the best perfor-
mance. However they found it may be useful to fa-
cilitate human comprehension of these models. Since
our focus was on performance and not on comprehen-

sibility, we did not use a non-negativity constraint. In
the future it may be interesting to look into comparing
their linear models to those found by StackingC to see
where they differ.

8. Conclusion

We have presented empirical evidence that Stacking in
the extension proposed by (Ting & Witten, 1999) per-
forms worse on multi-class datasets than on two-class
datasets, for all but one meta-learner we investigated.

This can be explained as follows: With a higher num-
ber of classes, the dimensionality of the meta-level data
is proportionally increased. This higher dimension-
ality makes it harder for meta-learners to find good
models, since there are more features to be consid-
ered. Stacking using meta-level data consisting of pre-
dictions does not suffer from this weakness, as would
be expected.

In order to improve on the status quo, we have pro-
posed and implemented a new Stacking variant, Stack-
ingC, based on reducing the dimensionality of the meta-
dataset so as to be independent of the number of
classes and removing a priori irrelevant features, and
shown that it resolves this previously unreported weak-
ness, for MLR and two other related meta-learners con-
sidered. We believe that the source of this improve-
ment lies partially in the dimensionality reduction, but
more importantly in the higher diversity of class mod-
els. Using one-against-all class binarization and regres-
sion learners for each class model seems to be essential.

Acknowledgements

This research is supported by the Austrian Fonds zur
Forderung der Wissenschaftlichen Forschung (FWF) un-
der grant no. P12645-INF. The Austrian Research Insti-
tute for Artificial Intelligence is supported by the Austrian
Federal Ministry of Education, Science and Culture. We
would like to thank Johannes Furnkranz for comments.

References

Blake, C. L., Merz, C. J: UCI repository of ma-
chine learning databases. http://www.ics.uci.
edu/"mlearn/MLRepository.html (1998). Depart-
ment of Information and Computer Science, Univer-
sity of California at Irvine, Irvine CA.

Chan, P. K., & Stolfo, S. J. (1995). A comparative
evaluation of voting and meta-learning on parti-
tioned data. Proceedings of the 12th International
Conference on Machine Learning (ICML-95) (pp.
90-98). Morgan Kaufmann.

Cleary, J. G., Trigg, L. E: K*: An instance-based
learner using an entropic distance measure. In
Prieditis, A., Russell, S., Proceedings of the 12th In-

ternational Conference on Machine Learning (1995)

108114, Lake Tahoe, CA.

Dietterich, T.G.: Approximate Statistical Tests for
Comparing Supervised Classification Learning Al-
gorithms. Neural Computation, 10 (7) 1895-1924.

Gama J., Brazdil P.: Cascade Generalization, Machine

Learning 41(3), 315-344, 2000.

Kononenko, 1., Bratko, I: Information-based evalua-
tion criterion for classifier’s performance. Machine

Learning 6 (1991) 67-80.

Merz, C.J.: Using Correspondence Analysis to Com-
bine Classifiers, Machine Learning, 36(1-2) (1999)
33-58.

Quinlan, J. R: C4.5: Programs for Machine Learning,
Morgan Kaufmann, San Mateo, CA.

Schaffer, C.: Selecting a classification method by cross-
validation. Machine Learning 13 (1), 135-143, 1993.

Schaffer, C.: Cross-validation, stacking and bi-level
stacking: Meta-methods for classification learning,
in P. Cheeseman and R. W. Oldford (Eds.), Selecting
models from data: Artificial Intelligence and Statis-
tics IV, Springer-Verlag, 51-59, 1994.

Seewald A.K., Firnkranz J.: An Evaluation of Grad-
ing Classifiers, in Hoffmann F. et al. (eds.), Ad-
vances in Intelligent Data Analysis, 4th Interna-
tional Conference, IDA 2001, Proceedings, Springer,
Berlin/Heidelberg/New York/Tokyo, pp.115-124,
2001.

Skalak, D. B: Prototype Selection for Compos-
ite Nearest Neighbor Classifiers. PhD Dissertation
(1997), University of Massachusetts, Amherst, Mas-
sachusetts.

Ting, K. M., Witten, I. H: Tssues in stacked general-
ization. Journal of Artificial Intelligence Research 10

(1999) 271-289.

Todorovski L., Dzeroski S.: Combining Multiple Mod-
els with Meta Decision Trees, in Zighed D.A. et al.
(eds.), Principles of Data Mining and Knowledge
Discovery, Lecture Notes in Artificial Intelligence,
Springer-Verlag, pp.54-64, 2000.

Wolpert, D. H: Stacked generalization. Neural Net-
works 5(2) (1992) 241-260.

