Support Vector MachineSe a.

zTB + Bo = 0. T8 + Bo = 0.

R
C = 151

Univ.-Lektor Dr.techn. Alexander K. Seewald
Osterreichisches Forschungsinstitut
far Artificia Intelligence

© Alexander K. Seevald
aex@seavald.at / alex.seevald.at



Linear Models Revisited

Previoudly explained

 Linear Regresson: very efficient, but yields
suboptimal classficaion performance

 Perceptron: good classification performance
(converges to an arbitrary separating hyperplane)
However, no convergence guaranteal if data ae
not linealy separable! Stochastic dgorithm:
Leans different hyperplane depending on
(random) starting point.

Today's L ecture Plan

e« Support Vedor Machinee maximum margin
hyperplane explicitly maximizes classfication
performance; guaranteed convergence (convex
decision problem); deals gracefully with not
linearly separable data.

» Logistic Regresson: Smpler related model, also
works quite well in practice
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L ogistic Regression

Logistic Regression arises from the desire to model posterior probabilities via
linear functions in X, whil e ensuring they sum to one and remain within [0,1] (one
regularization approach among many). LR is used in data analysis and inference,
where the goal is to understand the role of the input variables in explaining the
outcome. The model has the form:
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Very simple for two classes (K=2), since then there is only a single linea model.
Widely used in hiostatistical applications where binary responses (two classs)
occur quite frequently. For example, patients survive or die, have heart disease or
not, or a @ndition is present or absent. O is usually chosen by maximum
likelihood, thus ignoring P(TD) and assuming uniform P(f).
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L ogistic Regression (2)

For ssimplification, let K=2, and let the two classes be yes (=1) and no (=0).
Let p,(X;;0) = P(y,=yes | x,.JTD; 6) and p,(x;;6) = P(y;=no | x,UTD; 6) = 1-p,(x;;0).
Asaume dl training examples x; contain the cnstant term x,,=1 to accomodate the

intercept (constant term) B, B={B,n B} = 6. Then the log-likelihood P(f|TD) can
be written as:

D]
P(f |TD) =P(8|TD) = {(B) = Z y; log p, (X;; £) + (1= y;)log p,(X;; £)) =

D]

i Z y:.8'x; —log@+exp('x;))

To maximize log - likelihood /($), setits derivativeto zero:

W‘ in(Yi - pu(X;£)) =0

...whicharep + 1equationsionlinearn p.
Directsolutionis not possibleneedterativealgorithm!
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L ogistic Regression (3)

Solve nonlinear equation of log-likelihood via Newton-Raphson algorithm
Asauime N=[TD|, p=num. of attributesin TD and...

« Xisan Nx(p+1) matrix with each row an input vedor X; (extended with x;,=1)
* Yyisan N-vector of the outputs from TD.

«  Wisan NxN diagonal matrix with W= p,(x;B°9) (1- py(x;;p°) ); W;;=0f. i#
» pisthe vector of fitted probabiliti es p,(x;;3°)

o z=X[old+W-1(y-p) (adjusted response)

O prew=(XTWX) -IXTWz computes the new (3 from the old one.

Start with e.g. = { 0} P*1, repeat until convergence.

Also called iteratively reweighted least squares, because it solves a weighted
linear regresson problem in each iteration step (compare with (unwelghted)
linear regresson: XT(y-Xw)=0 = w = (XTX) -1XTy)

In the two-class case the obtained hyperplane is very similar to SVMs, provided
the training data is linealy separable. Smilar to SVMs, the training examples
further away from the hyperplane have lessinfluence on the final model.
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Example: African Heart Disease

Attribute Coeff. | ZScore

sbp 0.006| 1.023

tobacco 0.080 3.034 | =

|l 0185| 3219] -

famhist 0.939| 4178 "

obesity -0.03% | -1.187

alcohol 0.001| 0.136]

age 0.043| 4.184] =

(Constant) 4130 | -4285] °

Logistic Regresson yields the

model shown above. Z-Score

computes the Wald test with

null hypothesis = given ]
coefficient is zero while all )
others are not zeo ™= |

Approximately significant if
|Z-Score|>2 (shown in bold)
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Support Vector Machines

C=_1_
&1 1
C = 18T

Initially, alinear model in X. We don't minimize residual sguared error (RSS)
or log-likelihood, but maximize the margin ||B|| resp. minimize C=1/||B||. f(x) =
XT.B+B, is our function/model, where y,[{+1,-1} (i.e. the sign o f(X)
determines the dass), but the weights 3 and constant term (3, are determined
differently. This new regularization again guarantees an unigue solution.

o If the data is linealy separable, we minimize ||3|| subjed to the constraints
y.(%T.B+By)=1 for U i=1,2,...[TD|. Seetop left figure.

o |f thedataisnot linearly separable, we

(xT B + >1-¢&
introduce slack variables¢; to let (X B+ o) <i

min||| subject to] el

1
some examples be on the wrong Bgi >0, Z & < constants >
side of the margin. See top right figure. =
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Support Vector Machines (2)

This optimization problem is quadratic with linear inequality constraints and is
thus convex. A quadratic programming solution using Lagrange multipliers is
therefore feasible. An equivalent form of the nonseparable caeis:

D]
min%HﬂHz +1Y ¢ subjecttaZ; 20,y (X B+ B,)21-¢ i
Parameter A determines the weight given to optimizing the dad variables ¢&;

versus optimizing the margin. The separable cae @rresponds to A=co.

The Lagrange primal function combines minimalizaion and constraints into a

smgleformula_ 'Il'hcle cnnsl,tr?l nts are weighted by Lagrange ernDtljltl pliersa; and L.
TD TD

=8l #1363 Al B B) A=l 5 i

which will be maximized w.r.t. 3, B, and &;. Setting the derivates to zero yields:

ol [Substituthginto L, yieldstheLagrang€Wolfe)dualobjectivefunction
p=" ayX Qg m 4 M) ]
= O Lyp=)a - a0 Y, Y. X X,
[TD) [] Z Z Z Y%
0= £ *Yi E andtheKarush- Kuhn- Tuckerconditiongindicatesa solution)
K = A B (4=a;)e; =0 ai[yi(xrﬂ-l_ﬂo)_(l_gi)]:
o, 1,6 20 [ Y (X! B+ B,) —(1-¢) 20 (respfor i)
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A high-biaslearner: Perceptron

If the weight vector w is

initially set to all zeros,

the fina w  after

convergence will be a

«t ., linear combination of the
={ =0 ' training examples, similar

L otheraise

toaSVM.

Computes a linear function of x (assume algfng an x,=1 to X, so that constant
term w, can be handled). f(x) = sign(x™.w)Av isinitialized randomly.
Perceptron training rule: w « w+n(y-f(x)).xT, wherey isthe true output value
from training data (1), and n isthe leaning rate.

Intuitively, concept boundary is a hyperplane which separates classes +1 & -1.
Update rule is applied to each training example in turn, repeating until all
training examples are classfied correctly. Provided n is small enough, and the

training set is linearly separable, this algorithm converges in a finite number of
steps. If datais not linearly separable, convergence is not asaured.
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Support Vector Machines (3)

Features of the optimization problem for SVMs
» Nolocd minima, only one global minimum — the maximal margin hyperplane.

« To solve the dua problem we need only the dot product x;'x, for eadh
combination of training instances. The function computing the dot product,
K(u,v) is called kernel. This kernel trick enables us to expand the original
feature space via @(x), thus leaning a maximum margin hyperplane in higher-
dimensional feaure space which gves a nonlinear decison boundary in the
original, lower-dimensional feature space. Usually only afew a; are nonzero -
the assciated examples x; are cll ed support vectors.

[TD| 1 ™D D]

Lo —Za - IZZa VY KX, ;) whereK (u, V) = (g(u) [p(V))

@:0° 0" (m>> p) and<¢(u) Eo(v)} N @ (W)@ (v) =thedotproduct

» The weight vector (3 is a linear combinations of training examples x; . We can
use this relation to compute model f(x) via the kernel function. This alows us
even an infinite-dimensiona @(x), i.e. m=co, without explicit computation of 3.

D]

f(X) Zale(Xixl)-l_ﬂO
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Example: A Polynomial Kernel of Degree 2

2 p p p [P P (p.p)
K(u,v) =(uly)” = &uivi = &uivi %ujvj D > uuvy; = Z(uiuj)(vivj
I1=1 I1=1 j=1 L [=1 J=1 @i,j)=(0,D

whichis equivalenttoadot productusingg(u) = (u,u; )i,

Usually only the kernel function K(u,v) is defined explicitly, and the feature
mapping @ is defined implicitly. Not al functions can be written as dot product

[J Necessary and sufficient conditions for a kernel function in the finite case

o Symmetry: K(u,v)=K(v,u)

» Cauchy-Schwar z I nequality: K(u,v)2<K(u,u)K(v,v)

« Kernel Matrix K is positive semi-definite K = (K (x ,X.))(.n,.n)_
(XTKx=0 for all x#{0}P) V20, 1=(L)

In the infinite-dimensional case: Mercer's Theorem

Common kernel functions

polynomial kernel of degreed:  K(u,v)=(<u.v>+c)d (linear kernel if d=1)
Radial basis function (RBPF): K(u,v)=exp(-|Ju-v|P/c)
Kernels may be used as badkground domain knowledge, but are quite opague.
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Sequential Minimal Optimization (SMO)

Many ways exist to solve the dual optimization problem iteratively. We will focus

on one simple algorithm, Sequential Minimal Optimizaion (SMO).

j

j KX, %) + K(X;,X%;) = 2K(X;,X;)

A if o] >V
— %x?ewunc if U S0{;1(9\/\/,unc <V
|f anew,unc <U
—_ +y.y (aold _ new)

Bnax(o a0|d a0|d)
gnax(o OCOId +a0|d i)

_ E‘nln(i,a?'d o + 1)
= anln(i’aj)ld +a0|d)

if y, 2y,
ify, =y,

if y, £y,
if y, =y,
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Start with a,=0 for all i. This ensuresthat Za,y,=0 initially.
Choose a; , a; arbitrarily (usually by heuristic to speed up convergence)
The partial solution for a; and a; can be computed analytically:

new,unc =OCOId + yj ((f(xi)_yi)_(f(xj)_yj))

This brings us one step
nearer to the solution by
incressing L while
maintaining the simpler
constraints for the dual
problem, i.e. 2a,y,=0
Repeat until convergence
Determine By=Y;-f(X))
(computing  f(x)  with
B,=0) by averaging over
al support vectors 0<a;,<A
(implies ¢;=0) for
numerical stability.
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Example: One Step of SMO

(from 2nd Lecture, Slide 11: coded nominal attributes as 1-of-n; normali zed temp
& hum. to mean=0 and StD=1 by (t-19.5)/8.27 rand (h-73.8)/16.52)

TD= | overcast | rainy | sunny | Temp. | Hum. |W.=t | W.=f |y

Xy 1 0 0 1.391| 0981| O 1 |y=+1
X, 0 1 0 -0.786| -0.533| 1 0 |y,=1
X3 0 1 0 0.0605| 0.678| 1 0 |y;=1
X4 0 0 1 -0.665| -1.138| O 1 |y,=t1

SMO w linea kernel: d=1, c=0, complexity parameter A=1. Asame
0=(0.2224,0.1813,0.3275,0.2864) and chose o, and o, for one step of SMO.
f(x) =0.2224K (x,X,) —0.181K (X, X,) —0.327FK (X, X,) +0.2864K (X, X,) + 5,

(+1)((-1.0832+ B, - (1)) - (0.900+ B, — (+1))) _ 0.2864+ 04-10318618: 0.2902

o = 02864+

2.902+3.737-20(1.129
y, 2y, 0 U =max(,0.2864-0.1813 = 0.1051 V = min(1,0.2864-0.1813+1) =1

U< a?a/v,unc <V [ a26N — azem,unc

@™ =0.1813+ (-1)(+1)(0.2864-0.2902 =0.1851 0 newa = (0.22240.18510.32750.2902)
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Complexity parameter A

Influence of A on SVM performance
Linear kerne (@(x)=x, d=1), A=0.01
 Focusses more on data which is further away

from the maximum margin hyperplane. Bigger
margin reflects this behaviour. Error = 30.0%

Training Error: 0.26 27
Test Error: 0.30

Bayes Error: 0.21

Linear kernel (¢(x)=x, d=1), A=10000

» Focuses more on data which is nearer to the
maximum margin hyperplane. Smaller margin
reflects this behaviour. Error = 28.8%

In both cases, all examples which are on the wrong
side of the margin are given weight depending
on their distance from the margin.

As we @n see the example is not well separable

Training Error: 0.270
Test Error: 0.288
Bayes Error:  0.210

with just alinear kernel. Can we do better?
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Non-linear Kernel Functions

| nfluence of Kernel on SVM performance

polynomial kernel of degree d=4, A=1

 Non-linear dedsion boundary, small margin;
dightly better generalizaion performance but

tends to overshoot at the boundaries (a ammon
problem of polynomials): Error = 24.5%

N
Training Error: 0.180

Test Error: 0.245 :i:
Bayes Error:  0.210 * '

Gaussian (RBF) kernel, c=0.01, A=1

 Non-linear dedsion boundary, larger margin;
but almost optimal generalization performance.
Error = 21.8% vs. optimal Bayes Error = 21.0%.
This is probably due to the synthetic dataset
which was generated by a mixture of Gaussian

/Nic . TR L S
distributions
. TestEror: 0218 1 i iiiiiiiomselll ;

Bayes Error:  0.210
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Linear Methods L ossfunctions; Overview

Logistic regression, linear regresson and SVMs all basically use the same model

f(x) = sign(x".B+P,). However, for each of them the weights (3,3,) are estimated
by minimizing dfferent lossfunctions.

L oss function L (y,f(X)) Minimizing function
(-)Binomial Log-Likelihood | log(1+exp(-y*f(X)) £ i) = P(y = +1|x)
[Logistic Regression] () =log P(y =-1|x)
(Residual) Squared Error (y-f(x))? f(X)=P(y=+1|x) -
[Linear Regression] P(y =-1|X)
[Support Vector Machine] T = otherwise

More complex linea models include aubic splines, wavelets and nonparametric
logistic regresson (where log(probability) may be an arbitrary function), and
additi ve mixtures of multiple linea models with far more complex lossfunctions.
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