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Revisiting State-of-the-art L ear ning Systems
e Linea Methods

 Non-Linear Methods from Statistics
 Non-Linear Methods from ML

« Simple & Fast Methods

Real-Life Example: US Postal Office ZI P Codes

Apply al our learning systems and investigate....

 How to Assess Model Performance? Accuracy and Error
o Approadiesto Error Estimation

o Efficient use of sample data: Crossvalidation

« Determine sgignificant differences between leaners.
Fallacies and Pitfall s
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Linear M ethods

All linead methods have high hias and low
variance. The dedsion surfage which splits the
data into positive and negative example is
aways ahyperplane (in 2D: aline)

Linear Regression
e Minimizes mean sguared error
 Vaery fast, but susceptible to outliers

L ogistic Regression

* Regularization: Estimate class probabiliti es
vialogistic function, and ensure they sumto 1.
Maximizes log-likelihood of mode given
training data, i.e. P(f|TD)

e Quitefast; less susceptible to outliers T,
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Linear Methods (2)

Support Vector Machine with linear kernel

Regularization by defining a well-posed
optimizaion problem: finding the maximum
margin hyperplane (i.e. maximizing the margin
under constraints on misclassfications)

Fast; least susceptible to autliers

Similar to logistic regression for two-classtasks.

Support Vector Machine with nonlinear kernel

A linear model in high-dimensional (feature)
space defined by a nonlinea kernel. Deasion
boundary will usually be non-linear in the
original feature space.

Quite fast for polynomial and RBF kernel; sow
for complex kernels (e.g. String/Graph kernel)
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Non-linear M ethods from Statistics

The following ron-linear models are low bias and™* "~ . .-

high variance. The deasion boundary |ooks
differently in each case and is usually non-linear.

NaiveBayes
» Estimates class probabilities directly from TD.

Assuimes eadh attribute antributes
independently to the final classprobabliti es.

« Very fast. Less sitable for quantitative atributes -«

| nstance-based |lear ning (neaest neighbor)

o Classfy by similarity with training examples.

e Universal approximator: Can learn any concept
to abitrary preasion gven sufficient data

o But sufficient data size grows exponentially with
the number of input dimensions (curse-of-dim.)

Fast training, dow testing (~O(N?2))
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Non-linear M ethods from ML

.. e @ (@@ o ® & |0
Decision Trees (C4.5) R B I
e Divide-And-Conquer: Reaursive partitioning . N X
of training data by attribute values. Creates AL
decision treewith classvalues at the leaves. B s
« Only alows axis-paral e splits ! e |
« Fast & easy to understand (if treeis small) UL
ks o i >e< ks
Rule Learning (RIPPER) o [0 T
o Separate-And-Conquer: Successvely x
partition training data by rules = sets of L) Gl Lt
conditions over attribute values. — cronis —
* Yields compact and modular descriptions = *¢] e o T
rule sets. Dedasion boundaries for each rule co ey
are still axis-parallel. SRR
e Slower, but even easier to understand since o
rules can be analyzed separately. + L
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Simple & Fast Methods

These methods are very fast even for large
datasets, and have very high bias & very
low variance

Zer oR (gives Baseline Error/Accuracy)

 Predicts most common class from TD,
or arithmetic mean for regresson tasks

» Meaures complexity of learning
problem based on classdistributions.

OneR
» Outputs the best rule based on values of
asingle dtribute.

« Meaures complexity of learning
problem based on classdistributions and
the distributions of values from the most
predictive atribute.

o Lessuseful for quantitative dtributes.
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An Overview of L earning Systems

Characteristic Lin.& | SYM | Naive | Inst. Dec. Rule
Log.R Bayes | Based | Trees | Learn.

Natural handling of — — o) — + +

"mixed" data

Handing d MVs — — + + + +

Robustnessto ouliers —/o 0 0 + + +

Insensitive to — — — — + +

monotone transform.

Scal abil ity + o/+ o/+ — + 0]

Robstnessconcerning — — 0 — + +

irrelevant inputs

Interpretability + — 0 — o) +

Predictive Power 0 + — + 0] 0
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A Real-L ife Example

US Postal Office Digit Dataset

. Optical Character Recognitionfor zZIP O/ [}/ = 3/ [4#/18] &/ [7] 18]
Codes in the 90ies as alearning task ol 2243¢7 8 %
e Scanned >10,000 dgits from more @ )|l 3 4 5/l 7§ T
than 500 diff erent people. DN 2B Y5678 (9
e Digit ted, resized and
esmpled to 16x16 pixds with 2 V337 (S| & (7/18][2
numeric gray values. Eadh pixel is
represented by its own attribute. % g %% 'g % %, 2%’% é _3_3, ..?3’,.
e Tencl :{0,1,2..,9 e S0 11 1p= § e 1P 10 T
[] A(erne:I-Tﬁ?aJ{mplex Ie}arning task with 333333923333
p=256 quantitative attributes, N=7291 g % %é g %% 3% g % E %
training example, |C|=10 classes. 2333533323233
| . 2333323%33333333
We will apply all our learning 3333333233333
methods to this task and see how =3 3_3333‘33553 g
well they perform. But first... 3325333533333
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How to Assess M odel Performance?

Contingency table/ confusion matrix
Describes performance of leaning system on a dataset with C classes.

CxC Matrix E={e;}. Entry g, = number of examples of class i for which the
leaning system predicts class]. Obviously, 22 g, = [TD| = N.

M ost widespread measure for Model Assessment:
Accuracy = 2diag(E)/N (% of correct predictions)

Error = 1-Accuracy (% of incorrect predictions) Example; N=2007

Predicted class C=10clas=s (0-9)
A 2diag(E) = 1894

[1 Accuracy 94.4%

) [1 Error 5.6%
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Resubstitution Estimate

Training Set Error: Error of model ontraining chta

ZeroR (Baseline) 83.620 %
OneR 64.33%
Nalve Bayes 23.030

Linea Regresson 7.600
RIPPER (Rule Leaning) 4.66%
C4.5(DecisionTreelL.) 1.98%
SVM w/ linear kernel 0.1%6 (d=1, c=0, A=1)
SVM w/ paly. kernel 0.0%6 (d=5, c=0,A=10)
Logistic Regresson 0.00%

IB1 (InstanceBased L.) 0.00%

e

test
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Analytical Error Estimation

Training Set Error is usually too optimistic, and can be
misleading for some learning systems (e.g. IB1: aways
100%). It estimates how well the data can be
approximated by a given model, but does not yield a good
estimate of trueerror = error on previously unseen data.

For some learning methods a useful error estimate can be
derived analyticdly just from the training set:

. : p+l ,
LinearRegression Error = Err, ¢ +2 N o,

N (v — f(X.))?
wheres? = Z v, N (x.)) IS thesamplevarianceof theresiduakquareckrror
Eil -

+
Logistic Regressior2 classes) AIC = -2((B) + 2 pN 1

However, for most learning methods this does not work well.
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Hold-out Set Estimate

Test Set Error: Error of model onindependent test data
(1.e. not used for training)

ZeroR (Baseline) 82.1%X%
OneR 68.56%
Naive Bayes 28.70%

RIPPER (Rule Leaning) 16.64%
C4.5(DecisionTreelL.) 15.0046
Linea Regresson 13.0%%
Logistic Regresson 10.92%6
SVM w/ linear kernel 7.08%0
IB1 (InstanceBasedL.) 5.63%
SVM w/ paly. kernel 4.2%
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Hold-out Set Estimate (2)

Repeated hold-out testing

e Compute Hold-out Set Estimate severa times with
differently shuffled training data which is randamly split
Into new training and test sets. Determine average and
standard deviation d obtained errors/accurades to estimate
expected performance and its variance.

Variant: 0.632 Bootstrap

o Sample from training data with replacement to get training
set of sizeN. Useremaining datafor testing.

e Error = 0.63Z%rr +0.36&rr, ¢ EStimate does nat
work well for models that have overfitted the training cata.
(Errresubst.<< Errtest)
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Observations

Test et Error is far more accurate than Training Set Error,
but needs to hold out a significant part of data from the
training set (~25-50%) as an independent test set. This is
unsatisfadory: the alditiona data could be used to buld a
better moddl.

Repeated hold-out testing computes better expeded errors,
and also estimates the expected error variance. However, all
of the test datais still lost for training.

Crossvalidation solves this problem and makes it possible
to use almost all data for training, while still computing a
useful error estimate - at additional computational cost.
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Crossvalidation Estimate

Crossvalidation: Split training data into k equal-sized folds;
use one fold for testing and all others for training.

(k=10 below) :
tran
ZeroR 83.62% test
OneR 69.410

Nalve Bayes 25.8/0
RIPPER 12.4%
C4.5 11.6%%
Linea Reg. 9.29%
Logistic Reg. 8.50%
SVM linear 4.06%
IB1 2.96%
SVM pady. 1.73%

(G=)) X popaday

© Alexander K. Seevald
aex@seavald.at / alex.seevald.at

16



Crossvalidation Estimate (2)

Observations

As with Repeated Hold-out testing, Crossvalidation is computationally costly:
The leaning system is trained k times with (k-1)/k and tested on Yk of the full
data.

However, lessdatais lost. E.g. for k=10, 90% of data is used for training, and
only 10% is needed for testing. Still, each part of the data is used for testing
exadly once, whil e the training sets heavily overlap.

Most common accuracy/error estimation within ML & DM (k=5 or 10)

Variants of CV

Sratified CV: Ensure the same class distributions in each fold as in the full
training data. Introduces osme bias into the sampling, but reduces variance.

Leave-one-out CV: Crossvalidation with k = N = number of examples, so that
each fold contains only a single example. This is amost unbiased, but may
have high variance. By definition leave-one-out cannot be stratified, so thereis
no easy way to reduce the variance. Computationally very costly. For some
classifiers, leave-one-out can be computed much faster (e.g. SVM, IB & LinR)

© Alexander K. Seevald
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Deter mining Significant Differences

To comparetwo learning systems, a statistical significance test is needed.
Each test hasthe following properties:

» Power (probability to find asignificant difference that isrealy there)

o Typel (alpha) error (prob. to find a significant diff erence when there is none)
o Typell (beta) error (1-Power; prob. to overlook ared significant diff erence)

General testing procedure

« The null hypothesis is that the two agorithms perform similarly (i.e. no
significant difference). Running the experiments, computing the test statistic
and determining the p-value gives us the probability that the null hypothesisis
right — given that the test's assumptions are correct.

« If p-value <significance level (e.g. 5%), then we rejed the null hypothesis and
assume that there is a significant diff erence between the two agorithms.

To compare many learning systems. Analysis of Variance (ANOVA).
Repeated significance tests are best avoided, because of alpha error:
significance level of 5% means that to compare our 10 algorithms against
each other (45 comparisons) we expect 2-3 spurious significant differ ences.

© Alexander K. Seevald
aex@seavald.at / alex.seevald.at

18



Significance Tests

For asinglek fold CV (Algorithm A vs. Algorithm B)

e X2 Test after McNemar: Compute (pseudo) confusion matrix with the
corrednessof A's prediction as rows and B's prediction

as columns. A+, B+: corred prediction. A-,B-: incorrect B+ B-
prediction. Degrees-of-freedom (df) = 1. (c _ b)2 A+ |a |Db
2

Xo=>—" A- d
c+b ¢

« Paired (Sudent) t-Test: Compute differences Diff=Err,-Errg for each fold
separately. The average of the values sould be large relative to the standard
deviation to rejed null hypothesis. Significant values of t depend on degrees-
of-freedom (df) and chosen significance level.

K . : 2

) Z(Dn‘Fi - D|ff)

Diff :%Z Diff. o =12
=1

k-1
Diff
t=——df +1 df =k-1
o
df may be overestimated by ~ 50% since training folds are not independent.
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Significance Tests (2)

For multiplek fold CV

Most common approach: 10x 10-fold CV (each leaning system gets the same
train/test folds) and paired t-Test. |.e. a Paired t-Test with Err, and Errg
computed over al ten folds from each single CV. k=10=number of runs, df=9
df may be overestimated since runs are not independent [/ higher alpha error

Previously proposed [Dietterich, 1998]: 5x 2-fold CV as an dternative to 10x
10fold CV. Procedure is same & above, i.e. averaged error over folds, but uses
atwo-fold CV plusfive reptitions. This has low apha aror, but also high beta
error, which trandates to low power.

Using all 100 error estimates from 10x 10fold CV. |.e. a Paired t-Test with
Err, and Errg from each fold treated separately as independent estimate.
k=100, so theroretically this would mean df=99, but since there is so much
redundancy, df=10 has been proposed for binary data based on experiments
with synthetic data [Bouckaert, 2003]. Has dgightly higher replicability
(repeding the eperiments yields more similar results on average), but
estimation of effedive df for non-binary datais gill undergoing investigation.
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