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Association Rule Mining

Find rules of theform A [l B where A and B are itemsets,
(i.e. sets of items) and An B=@.

An item is a specific obect which may either be part of an
Itemset or nat.

Rules can related to any attribute; there is no target
variable (unsupervised as in Reinforcement Learning)

Usually applied to hinary data (market basket analysis);
Nomina variables can be transformed in the usual way
Into ore binary attribute per value. Eadh hinary attribute
corresponds to an item with attr,=1 < ltem1 is present.
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Association Rule Mining: Defs.

T Isthe set of all posgble items. When A,BLOT, AnB=@:
ALl B Isan associationrule.

E.g. supermarket: Each dstinct product is an item O T.
Ead transaction Tr; corresponds to the products bougft by
one shopper, andthus to a spedfic itemset. TD ={Tr;}.

Rules of the foom A [ B tel us abou correlations
between itemseats, e.g. (milk,beer) [J (diapers, babyfood)
Rules are dharaderized by Support (how common is the
rule?, and Confidence (how well doesrule A 1 B hald?)

Algorithms to find all rules with gven minimum Support
and Confidence exist, and are space and time-efficient.
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Support & Confidence

Support(AL B)=P(ALB) [P(A)for Borgeltsimplementton]

Confidence(ALl B) = P(ALB)
P(A)
_ 1 _ . _ P(AUB)
P(l) = |TD|T|’;D||;|(TH =1 Lift(AL B) P(A)P(B)

ltemset | isfrequent = Support(l) = minimum support

Adding items. Support can only monotonically decrease
(P(1OX)<P(l)), since we add restrictionsto the itemset.

I If an itemset | is frequent, all its subsets must also be
frequent. If any subset has lower suppat, then | canna be
be frequent. Thisis an efficient pruning criterion
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TheApriori Algorithm

Computesthe set of all frequent itemsets.

L, = {set of frequent items (=frequent itemsets of size 1)}
for (k=1; L, !=0; k++) {
C..={AUB|ABUOL,, AUB=k+1,
O XOAOB) O XO(OL)}
L., ={C|CUC,,; && Support(C) > MinSupp }
}

return LJ L;

Afterwards, compute all possible rules (partitions) of
frequent itemsets and output those with min. confidence.

Open-source Apriori implementation byC. Borgelt
http://fuzzy.cs.uni-magdeburg.de/~borgelt/apriori.html
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Rules from Weather Dataset (nominal)

Minimum Support = 0.3, Minimum Confidence = 0.7
e outlook=overcast [1 play=yes
supp 0.28,conf: 1.0,lift: 1.56
e temperature=cool [1 humidity=normal
supp 0.28,conf: 1.0,lift: 2.0
e humidity=normal, windy=false [0 play=yes
supp 0.28,conf: 1.0,lift: 1.56
e humidity=normal [0 play=yes
supp 0.43,conf: 0.86,lift: 1.33
e play=no 0 humidity=high
supp 0.28,conf: 0.8,lift: 1.6

For large datasets, outputs alarge set of rules (>1000), so
under standing rulesis more challenging than mining.
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Ex.. Computing Support and Confidence

e humidity=normal [0 play=yes
confidence=6/7=0.86(6x (correct, 1xwrong)
' I

=6/14=0.43

suppat

Outlook  Temp. Humidity; Windy | CLASS
SUNmy hot hugh o false 1 Don't Play
SUIITY hot hugh | true . Don't Play
overcast hot ugh - false 1 Play
rain mild hugh . false | Play
> Tan cool normal——false——» Play
rain cool normal——ime— Don't Play
— overcast  cool nonma——trwe—— Play
SUIITY mald hugh false Don't Play
< sunny cool normal fafse > Play
— Tl mld nornmal——#atse— Play
|, sunimy muld norm:l trore > Play
overcast muld ugh true Play
—» overcast hot noriml fafse > Play
rain mild hugh true Don't Play
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| nfor mation Visualization

No inherent spatial or temporal structure (contrary to
Scientific ~ Visualization). Heter ogenous, high-
dimensional data — use appropriate visual metaphors.
Interaction with the user in context of real-time
explorative data analysis offers the highest benefits.

Five general techniques

o Geometric. e.g.scatterplots and parallel coordinates.
e |con-based: e.g.chernoff faces, stick figures, glyphs.
» Pixel-based: e.g.reaursive patterns, circle segments.
e Hierarchical: e.g. cone/cam trees and treemaps.

o Graph-based: e.g. pdylines and curved lines.
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Example: Visualizing Class Distributions

Table 8.1: The used datasets with number of classes and examples, discrete and
continuous attributes, baseline accuracy (%) and entropy in bits per example
(Kononenko & Bratko, 1991). Class frequencies are shown in descending order;
the length of every black and white bar determines one class frequency each.

Dataset cl | Inst | disc | cont bL E class frequencies
audiology 24 226 69 0 | 25.22 | 3.51 | s WATOW
autos 7 205 10 16 | 32.68 | 2.29 | me—
balance-scale 3 625 0 4| 4576 | 1.32 | mae— =
breast-cancer 2 286 10 0| 70.28 | 0.88 | me——S )
breast-w 2 699 0 916552093 | m—
colic 2 368 16 716304 | 095 | e e—
credit-a. 2 690 9 6 | 55.51 | 0.99 | p—————
credit-g 2 | 1000 13 71 70.00 | 0.88 | ne———_"
diabetes 2 768 0 & | 6510 | 0.93 | — )
glass 7 214 0 9| 3551 | 219 | e w0
heart-c 5 303 7 6| 5446 | 1.01 | ——— )
heart-h 5 294 7 66395 ] 096 | m——
heart-statlog 2 270 0 13 | 5556 | 0.99 | —— )
hepatitis 2 155 13 6 | 79.35 | 0.74 | n————)
ionosphere 2 351 0 34 |1 6410 | 094 | ———— )
iris 3 150 0 4 | 33.33 | 1.58 | m
labor 2 57 8 16491 | 094 | p——
lymph 4 148 15 35473 | 124 | oneee—
primary-t. 22 339 17 O] 2478 | 3.68 | W W W EIID
segment 7 | 2310 0 19 | 14290 | 2.8] | e e wew wam
sonar 2 208 0 60 | 53.37 | 1.00 | me—
soybean 19 683 35 0| 1347 | 3.84 | s W TIIID
vehicle 4 846 0 18 | 2541 | 2.00 | s -
vote 2 435 16 0] 6138 | 096 | e —
vowel 11 990 3 10 9.09 | 346 | = - - .
Z0O0 7 101 16 214059 [ 241 | ——— W
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Example (1): Scatterplots

Improvement of StackingC over Stacking
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Example (2): Confidence Intervals

# meanH_CRM_byMBX
m meanH_SA_byMBX

1 2 3 4 5

Mailboxes
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2nd Dimension

Example (3): Sammon-M apping

segment sammon-mapping (stress=0.038)
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Example (4): Glyph-based Visualization
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Figure 8.3: On the left side of the figure, we see two example glyphs. The main
form is a circle. A filled circle indicates that StackingC predicted the wrong class;
an empty circle indicates otherwise. Each direction (up, right, down and left)
corresponds to a base classifier (148, NaiveBayes, MLR and KStar) as shown, where
the presence of a line indicates a correct prediction. The left glyph sample thus
encodes an example where NaiveBayes, J48 and StackingC were correct; while the
right glyph sample encodes an example where all base classifiers were incorrect,
including StackingC. If one of the base classifiers were correct in this case, we
would see a white line from the center of the filled circle into the appropriate
direction, analogous to the black line for the empty circle. On the right side of
this figure we see all thirty-two possible glyphs. The two upper rows correspond
to instances where StackingC predicted the class wrong; the other two rows to
correct predictions. The same order of glyphs is used later.
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Example (5): Glyphs+ Sammon M apping

segment StC/Base prediction space
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Example (6): Cone Decision Trees

&1+ Decision-Cone Tree
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ThingsWe Did Not Talk About and Why

Clustering

» Groupsdatainto clusters. Unsupervised, i.e. no classinformation avail able.
 Nosinglefield: Contains a variety diff erent subproblems.

Neural Networks

» Unstable learning scheme, difficult to master and control.

* Inmost practicd application, leans an almost linear model (!)

o If interested: Neural Computation = 2+1h lecture by Prof. Dorff ner
Genetic Algorithms

» Relieson spedafic problem structure to work well ~ experimental technique.

* Very high computational effort, but no guarantee of useful solution (compare
with Dynamic Programming which guarantees a global optimum solution; or
Monte Carlo Methods which rely on random sampling in solution space)

Hands-on Machine Learning / Data Mining tasks
e Topic of next-yea's ledure Al Methoden der Datenanalyse (hopefully...)
Wewill creae our own training datafor digit recognition et al.
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