
Dissertation

Towards Understanding Stacking
Studies of a General Ensemble Learning Scheme

ausgeführt zum Zwecke der Erlangung des

akademischen Grades eines
Doktors der technischen Naturwissenschaften

betreut von ao.Univ.-Prof.Dr. Gerhard Widmer,

Institut für Medizinische Kybernetik und
Artificial Intelligence (IMKAI)

eingereicht an der Technischen Universität Wien,
Fakultät für Naturwissenschaften und Informatik

von

Dipl.-Ing. Alexander K. Seewald
alexsee@oefai.at http://alex.seewald.at alex@seewald.at

wohnhaft Anton-Krieger-Gasse 78/5, 1230 Wien

Matrikelnummer 9425006
Geboren am 08. Dezember 1975 in Wien

Wien, im Februar 2003

Deutsche Kurzfassung

Diese Dissertation besteht aus komplementären Studien, die den Ensemble-
Lernalgorithmus Stacking (Wolpert, 1992) untersuchen. Verschiedene Facetten
seines Verhaltens und seine Beziehung zu anderen Ensemble-Lernalgorithmen
werden untersucht, letzteres in zweifacher Weise: Einerseits indem wir zeigen,
daß es üblicherweise die beste Wahl ist1; andererseits durch Aufzeigen der
Äquivalenz von Stacking mit vielen anderen Ensemble-Lernalgorithmen (Kapi-
tel 7) – d.h. der Allgemeinheit von Stacking.

Im ersten Kapitel wird erklärt, was Stacking ist und wie es funktioniert,
gefolgt von einer Übersicht der Kapitel mit zusammengefaßten Ergebnissen.

Im Kapitel 2 befindet sich eine Übersicht der verwandten Forschungsliter-
atur, die einen Querschnitt der aktuellen Forschung auf diesem Gebiet darstellt.

Im Kapitel 3 erforschen wir den Parameterraum von Stacking. Wir unter-
suchen Stacking systematisch mit einem vollständigen Set von Level-0 Lernal-
gorithmen, verschiedenen Level-1 Lernalgorithmen und zwei verwandten Arten
von Meta-Daten. Wir schlagen theoretisch und empirisch fundierte Defaultwerte
für alle Parameter vor. Dieses Kapitel basiert auf (Seewald, 2002c).

Im Kapitel 4 untersuchen wir Meta-Regressionslernen, d.h. die Voraus-
sage von Stackings Fehlerrate aus einer Anzahl von Charakterisierungen von
zu lernenden Daten und Level-0 Lernalgorithmen. Wir untersuchen auch Meta-
Klassifikationslernen, d.h. die direkte Voraussage von signifikanten Unterschieden
zwischen verwandten Ensemble-Lernalgorithmen. Dieses Kapitel basiert auf
(Seewald, 2002b).

Im Kapitel 5 stellen wir die Variante StackingC vor, welche die Genauigkeit
von Stacking verbessert, den Lernvorgang beschleunigt und zusätzlich eine sig-
nifikante Schwäche behebt. Dieses Kapitel basiert auf (Seewald, 2002a).

Im Kapitel 6 stellen wir die Ergebnisse eines alternativen Paradigmas zum
Vergleich zwischen Lernalgorithmen vor. Wir untersuchen die Hypothese, daß
StackingC stabiler ist als andere Ensemble-Lernalgorithmen, d.h. daß seine
Lernkurve über allen anderen Lernkurven liegt. Überraschenderweise finden
wir heraus, daß in diesem Fall keine signifikanten Unterschiede zwischen den
untersuchten Lernalgorithmen auftauchen.

Im Kapitel 7 zeigen wir, daß viele Ensemble-Lernalgorithmen wie StackingC,
Grading (Seewald & Fürnkranz, 2001) und sogar Bagging (Breiman, 1996) von
Stacking simuliert werden können. Wir geben in den meisten Fällen äquivalente
Definitionen als Level-1 Lernalgorithmen für Stacking an.

Im Kapitel 8 stellen wir das Forschungsgebiet Informationsvisualisierung vor
und wenden es an, um unsere 26 Lernprobleme und umfangreiche experimentelle
Ergebnisse zu visualisieren. Wir finden heraus, daß die Mehrzahl der falsch klas-
sifizierten Beispiele dadurch entstehen, weil keiner der Level-0 Lernalgorithmen
korrekt vorhersagt. Obwohl Stacking potentiell in der Lage wäre, selbst in dieser
Situation zu lernen, wird dies nicht beobachtet. Ganz im Gegenteil, Stacking

sagt sogar dann falsch voraus, wenn eine Mehrheit der Level-0 Lernalgorith-
men richtig liegt. Graphiken von allen Lernproblemen sind im Appendix A
dargestellt.

In Kapitel 9 geben wir abschließend eine Zusammenfassung unserer haupt-
sächlichen Ergebnisse, generelle Schlußfolgerungen und einen Ausblick auf zu-
künftige Forschungen an.

1Wir konnten dieses Ergebnis mittels StackingC noch verbessern, siehe Kapitel 5.

Abstract

This thesis consists of complementary studies concerned with the ensemble
learning scheme Stacking (Wolpert, 1992) We will explore various aspects of
its behaviour and also clarify its relation to related ensemble learning schemes
in two ways: by showing that it is usually the best choice among ensemble learn-
ing schemes2 and also by demonstrating that most ensemble learning schemes
can be simulated by Stacking (Chapter 7), making it the most general ensemble
learning scheme.

In the first chapter, we give an overview of what Stacking is and how it works,
combined with a short roadmap to this thesis.

In Chapter 2, we present an overview of related research for Stacking, con-
sidering both state of the art approaches and unique contributions to this field.

In Chapter 3, we explore the parameter state space of Stacking. We sys-
tematically investigate Stacking with an exhaustive set of base classifiers, diverse
meta classifiers and two related types of meta data. We propose default settings
of all these parameters, grounded by empirical and theoretical arguments. This
chapter is an extended version of (Seewald, 2002c).

In Chapter 4, we investigate regression meta learning, trying to predict Stack-

ing’s accuracy from a variety of dataset-related and base-classifier-related fea-
tures. We also investigate classification meta learning, trying to predict signifi-
cant differences between related ensemble learning schemes directly on a dataset-
by-dataset basis. This chapter is an extended version of (Seewald, 2002b).

In Chapter 5, we introduce a variant, StackingC, which improves Stacking’s
performance further, reduces computational cost and also resolves a significant
weakness found during the course of our experiments. This chapter is an ex-
tended version of (Seewald, 2002a).

In Chapter 6, we present results from an alternative paradigm to compare
classifiers. We investigate the hypothesis that StackingC is more stable than other
ensemble learning schemes, i.e. that its learning curve is at the uppermost level
of all learning curves. Surprisingly, we find that there is no significant difference
between all considered schemes within this paradigm.

In Chapter 7, we show that all ensemble learning systems, including Stack-

ingC, Grading (Seewald & Fürnkranz, 2001) and even Bagging (Breiman, 1996)
can be simulated by Stacking. For this we give functionally equivalent definitions
of most schemes as meta classifiers for Stacking.

In Chapter 8, we shortly introduce the field of Information Visualization
and apply it to the problem of visualizing our twenty-six datasets and extensive
experimental results. We find that the majority of examples are misclassified
because none of the base classifiers predict correctly. Although Stacking would
potentially be able to learn from such a setting, this is not observed. On the
contrary, Stacking even predicts incorrectly when a majority of base classifiers
predicts correctly. Full page figures for all datasets can be found in Appendix
A.

Finally, in Chapter 9, we conclude this thesis with a summary of our main
findings, an overall conclusion and an outlook on future research.

2We were even able to improve on this result with our variant StackingC, see Chapter 5.

Contents

1 Introduction 4

1.1 Motivation . 4
1.2 How does Stacking work? . 5
1.3 Short Roadmap . 7

2 Related Research 9

2.1 Choosing Parameters & Providing Insight 10
2.2 Alternative Ensemble Learning Schemes 11
2.3 Extending non-ensemble learners 13
2.4 Conclusion . 14

3 Exploring the Parameter State Space 15

3.1 Introduction . 15
3.2 Overview . 16
3.3 Experimental Setup . 17
3.4 Base Classifier Choice . 19
3.5 Meta Classifier Choice . 21
3.6 Related Research . 25
3.7 Conclusion . 26

4 Meta-Learning for Stacking 28

4.1 Introduction . 28
4.2 Experimental setup . 29
4.3 Estimating Stacking’s Accuracy 31

4.3.1 Linear Models based on Single Features 34
4.3.2 Models based on multiple features 34

4.4 Meta-Learning of Significant Differences 35
4.4.1 Stacking vs. Voting . 36
4.4.2 Stacking vs. Grading . 37
4.4.3 Stacking vs. XVal . 37

4.5 Related Research . 38
4.6 Conclusion . 39

5 Improving upon Stacking: Stacking with Confidences 40

5.1 Introduction . 40
5.2 StackingC . 41
5.3 Experimental Setup . 43
5.4 Multi-class vs. two-class datasets 44

1

5.5 StackingC versus Stacking . 45
5.6 Discussion . 47
5.7 Related Research . 49
5.8 Conclusion . 49

6 Learning Curves 50

6.1 Introduction and Experimental Setup 50
6.2 Results and Discussion . 52
6.3 Related Research . 53
6.4 Conclusion . 53

7 Towards a Theoretical Framework 59

7.1 Introduction . 59
7.1.1 Definitions . 60

7.2 Mapping Ensemble Learning Schemes 61
7.2.1 Voting . 62
7.2.2 X-Val . 63
7.2.3 Grading . 63
7.2.4 Bagging . 64
7.2.5 Others . 65

7.3 Experimental Issues . 65
7.4 Related Research . 66
7.5 Conclusion . 66

8 Information Visualization 68

8.1 Introduction . 68
8.2 Visualizing Instance Space . 69
8.3 Visualizing Prediction Space . 74
8.4 Related Research . 76
8.5 Conclusion . 78

9 Summary of Conclusions 81

9.1 Exploring the Parameter State Space 81
9.2 Meta-Learning for Stacking . 81
9.3 Improving upon Stacking: Stacking with Confidences 82
9.4 Learning Curves . 82
9.5 Towards a Theoretical Framework 83
9.6 Information Visualization . 83
9.7 Conclusion and Outlook . 84

A InfoVis Figures 90

B Curriculum Vitae 143

B.1 Biographical data . 143
B.2 Professional Career . 143
B.3 Education & Scientific Career . 143
B.4 Publications . 144
B.5 Awards and stipends . 144

2

Acknowledgements

This research is supported by the Austrian Fonds zur Förderung der Wis-
senschaftlichen Forschung (FWF) under grant no. P12645-INF. The Austrian
Research Institute for Artificial Intelligence is supported by the Austrian Federal
Ministry of Education, Science and Culture.

In no particular order, I’d like to thank Sašo Džeroski, Bernard Zenko and
Ljupco Todorovski for one week of research collaboration, many helpful hints
and discussions, inspiration for StackingC, valuable feedback on a preliminary
version of this thesis and for introducing me to a lot of interesting people at
recent conferences; Gerhard Widmer for letting me find a suitable research field
on my own, for helping me write my first paper – and for employing me in
the first place; Eduard Gröller for accepting to be my second examiner and for
pointing me towards some interesting proceedings; Johann Petrak for helping
me write my first paper, too, some feedback on later papers and a lot of technical
support; Johannes (Juffi) Fürnkranz for helpful tips, valuable feedback and a
lot of useful references; Elias Pampalk for valuable feedback on a preliminary
version of Chapter 3; Simon Dixon for sharing with me his tricks on squashing
papers in LaTeX – fortunately, this thesis does not need them; Arthur Flexer
for pointing me towards Erich Mittenecker’s book on statistical evaluation of
experiments, which finally enlightened me as to how to implement all these
statistical tests – hopefully properly; and especially Robert Trappl who manages
our small research institute so well that even my many travels to various far-
away conferences in nice places such as Key West, Cascais, Sydney, Helsinki and
Maebashi could be easily supported.

Thanks also to my family, who supported me in so many ways that I will not
list them out of fear of forgetting something; to all my friends for motivation,
distraction and encouragement; and to myself for finally finding the willpower
to push this through – driven by deadlines as usual.

Special thanks to Sonja Reitinger for tangible and intangible support – e.g.
in the form of letting me use her notebook to finish this thesis in bed.

3

Chapter 1

Introduction

This chapter serves as an introduction to this thesis. We will begin by ex-
plaining the motivation behind this thesis, continue by introducing important
concepts and terms based on an example of Stacking, and conclude with a de-
tailed roadmap to the subsequent chapters of this thesis to facilitate quick access
to interesting material.

1.1 Motivation

A variety of machine learning algorithms are available, e.g. decision tree learn-
ers such as C4.5 (Quinlan, 1993a), instance based learners such as IBk or KStar

(Cleary & Trigg, 1995), simple learners based on conditional probabilities such
as NaiveBayes and linear discriminants such as MLR (multi-response linear regres-
sion) – to name just a few. However, which one gives optimal or even acceptable
results for a given dataset at hand is as of now a black art. Meta-Learning ap-
proaches (Brazdil, Gama & Henry, 1994; Pfahringer et al., 2000) aim to solve
this problem by learning which classifier to choose from dataset characterization
features and the performance of simple landmark classifiers with mixed success,
but so far no reliable patterns have emerged. Some researchers rely on fine-
tuning a single classifier which they presumably know best, while others try to
decide this question empirically on a case-by-case basis.

The predominant approach to choose classifiers empirically is to estimate
the accuracy of candidate algorithms on the problem, usually via crossvalida-
tion1, and select the one which seems to be most accurate. Schaffer (1993) has
investigated this approach in a small study with three learning algorithms on
five UCI datasets. His conclusions are that on the one hand this procedure is
on average better than working with a single learning algorithm, but, on the
other hand, the crossvalidation procedure often picks the wrong base algorithm
on individual problems. This problem is expected to become more severe with
an increasing number of classifiers.2

1Crossvalidation randomly splits the dataset into a fixed number of equal-sized parts, or
folds. All but one fold is used for training and the remaining fold for testing each classifier.
This procedure is repeated so that each fold is used for testing exactly once. The average
accuracy over all test folds is the crossvalidation’s estimate of the classifier’s accuracy.

2In rank comparisons, see e.g. Table 3.1, we have found that selection by crossvalidation
is usually the worst ensemble learning scheme – even with just four classifiers.

4

As crossvalidation essentially computes a prediction for each example in
the training set, it was soon realized that this information could be used in
more elaborate ways than simply counting the number of correct and incorrect
predictions. One general way to achieve this is Stacking (Wolpert, 1992), which
learns from predictions of base (=level-0) classifiers, via a single meta (=level-1)
classifier. The basic idea of Stacking is to use the predictions of the base classifiers
as attributes in a new training set that keeps the original class labels. This
new meta training set is then used to train the meta classifier which learns to
predict the final class. So for the additional cost of running an appropriate meta
classifier it is possible to utilize all the output generated by a crossvalidation.
Furthermore, the dimensionality of the meta dataset is equal to the number of
classes multiplied by the number of base classifiers3 and thus fairly independent
of the dimensionality of the original dataset. The additional training cost for
the meta classifier is usually much smaller than the training costs for the base
classifiers, especially for large, high-dimensional datasets.

A straightforward extension proposed by (Ting & Witten, 1999) is using class
probability distributions instead of predictions. This allows each base classifier
to express uncertainty by returning estimated probabilities for all classes instead
of just the one predicted class. Each prediction is thus replaced by a vector
of class probabilities. In this case MLR (multi-response linear regression) is
proposed as meta classifier. We follow their approach because all our base
classifiers are equipped to output class probability distributions. In the second
part of chapter 3 concerned with meta classifier choice, we will show that this
extension is indeed competitive to Stacking with predictions. Furthermore, in
Chapter 5 we will introduce a new variant derived from this extension which
performs significantly better, learns faster and compensates for a previously
unknown weakness in the mentioned extension.

We have chosen to investigate Stacking because it is the most general en-
semble learning scheme available – in Chapter 7 we will demonstrate that it is
able to simulate most ensemble learning schemes – and because its successful
application is still a matter of black art. The latter will be comprehensively
addressed in Chapter 3. As further motivation Stacking and especially our new
variant StackingC seem to be the best performing ensemble learning schemes – see
Table 3.1 for a comparison against other ensemble learning schemes including
Bagging (Breiman, 1996) and AdaBoostM1 (Freund & Schapire, 1996). However,
other methodologies for comparing classifiers find less or even no differences
between related ensemble learning schemes, see Chapter 6.

1.2 How does Stacking work?

We will now explain Stacking in detail, based on a simple example. Figure 1.1
shows Stacking on a hypothetical dataset with three classes, n examples and N
diverse base classifiers. Figure 1.1(a) shows the original dataset. Each example
from the dataset consists of an attribute vector of fixed length, followed by a
class value.

First, all base classifiers are evaluated via crossvalidation on the original
dataset. Basically, a crossvalidation splits the dataset into J equal-sized folds,
then uses J − 1 folds for training and the remaining fold for testing. This

3For StackingC, see Chapter 5, it is just the number of base classifiers.

5

Attrs Cl.

AttrV ec1 a

AttrV ec2 b

AttrV ec3 b

AttrV ec4 c
...

...
AttrV ecn a

(a) original training set

a b c

0.90 0.05 0.05
0.15 0.70 0.15
0.10 0.80 0.10
0.20 0.20 0.60

...
...

...
0.80 0.10 0.10

(b) sample class probability distribution

Classifier1 Classifier2 ClassifierN

a b c a b c a b c class

P1,a1 P1,b1 P1,c1 P2,a1 P2,b1 P2,c1 . . . PN,a1 PN,b1 PN,c1 a

P1,a2 P1,b2 P1,c2 P2,a2 P2,b2 P2,c2 . . . PN,a2 PN,b2 PN,c2 b

P1,a3 P1,b3 P1,c3 P2,a3 P2,b3 P2,c3 . . . PN,a3 PN,b3 PN,c3 b

P1,a4 P1,b4 P1,c4 P2,a4 P2,b4 P2,c4 . . . PN,a4 PN,b4 PN,c4 c
...

...
...

...
P1,an P1,bn P1,cn P2,an P2,bn P2,cn . . . PN,an PN,bn PN,cn a

(c) training set for Stacking’s meta classifier

Figure 1.1: Illustration of Stackingon a dataset with three classes (a, b and c), n
examples and N base classifiers. Pi,jk refers to the probability given by classifier
i for class j on example number k

process is repeated J times so that each fold is used for testing exactly once, thus
generating one prediction for every example.4 One classifier’s output is therefore
a class probability distribution for every example.5 Figure 1.1(b) shows how
such a reasonable class probability distribution may look. The rows correspond
to the examples from the original training set, see Figure 1.1(a).

The concatenated class probability distributions of all base classifiers in a
fixed order, followed by the class value, forms the training set for Stacking’s meta
classifier, see Figure 1.1(c). After training the meta classifier, the base classifiers
are retrained on the complete training data.6

For testing, the base classifiers are first queried for their class probability
distributions on the test example. These form a meta-example for the meta
classifier which outputs the final class prediction.

4J = 10 throughout this thesis.
5In the original proposal by Wolpert (1992), this would have been one predicted class

value for each example. However, in this thesis we use mainly the extension by Ting &
Witten (1999), unless otherwise noted.

6Interestingly, not retraining the base classifiers yields slightly worse results.

6

The choice of the following parameters for a Stacking classifier has initially
been described as black art by Wolpert (1992). Ting & Witten (1999) have
proposed settings for the meta classifier and the type of meta data to be used. In
Chapter 3, we will revisit their results, run our own more extensive experiments
which disagree on some of their points and additionally address the remaining
issue of base classifier choice.

• One or more base classifiers, which may be arbitrary machine learning
algorithms – in case of Stacking with probability distributions, they should
be able to output class probability distributions.7 The issue of appropriate
choice of base classifiers seems to have not been investigated systematically
previously.

• A single meta classifier. According to Wolpert (1992), relatively global
and smooth classifiers should perform well. Ting & Witten (1999) propose
MLR (multi-response linear regression). However, models such as decision
trees have also been used successfully (e.g. (Skalak, 1997)), although they
are clearly not smooth.

• The choice of meta data to use, i.e. the extension by Ting & Witten (1999)
using probability distributions or the original proposal by Wolpert (1992)
using only the predictions of base classifiers. Both approaches have their
strengths and weaknesses.

More focussed and detailed introductions on Stacking can be found in the fol-
lowing chapters where appropriate. For the sake of comprehensibility, some
redundancy is clearly inevitable.

1.3 Short Roadmap

In the following Chapter 2 we present papers from related research concerning
ensemble learning schemes, structured along three different dimensions. Fo-
cussing on Stacking, we consider state of the art approaches and unique contri-
butions to the field of ensemble learning schemes.

Afterwards, we address the issue which may have hampered the adoption of
Stacking within the research community, namely the choice of parameters – base
classifier, meta classifier choice and type of meta data to use. So, in Chapter 3,
we propose default settings for Stacking which are empirically and theoretically
grounded. Notice also that all base classifiers have been used with their default
settings, so we propose a single set of settings for all experiments with Stacking.
The mentioned chapter is an extended version of (Seewald, 2002c).

As the mechanism behind Stacking is largely unknown and no theoretical
estimation of errors can be easily obtained – contrary e.g. to unweighted vot-
ing – trying to find such approximate estimations via statistical techniques and
meta-learning seems appropriate. In Chapter 4, we investigate two approaches:
learning Stacking’s accuracy from dataset-related and base classifier related fea-
tures, and predicting the best ensemble learning scheme for a given dataset
using the same feature set. Meta-Learning in this sense is usually hard – never-
theless we found some surprisingly simple models and can even offer a tentative

7Class probability distributions may easily be constructed from a predicted class, but these
are seldom of use.

7

explanation for one of them. This chapter is an extended version of (Seewald,
2002b).

During our experiments with Stacking, we found a previously unreported
weakness, namely worse performance on multi-class datasets. In Chapter 5 we
give empirical evidence for this weakness, trace it to its source and propose a
new stacking variant, StackingC, which improves Stacking’s performance while
also resolving this weakness. We also discuss results on applying the same
approach to related variants. This chapter is an extended version of (Seewald,
2002a).

Usually, classifiers are compared via accuracy, statistical tests such as t-
Test or χ2 test, or minimum description length. Stability of classifiers, in the
sense of graceful performance degradation for smaller and smaller training sets,
does not seem to have been studied systematically. So we chose to investigate
the hypothesis that StackingC is the most stable ensemble learning scheme via
learning curves. However, we were surprised to find no significant differences
between related ensemble learning schemes. Chapter 6 presents our results,
discussion and some tentative conclusions from this experiment.

In Chapter 7, as a step towards a theoretical framework for ensemble clas-
sification, we show that most ensemble learning schemes – Selection by Cross-
validation (X-Val), Voting, StackingC, Grading (Seewald & Fürnkranz, 2001) and
even Bagging (Breiman, 1996) – can be simulated by Stacking. To achieve this,
we give functionally equivalent definitions of these schemes as meta classifiers
for Stacking. On the way, we also show how Grading can be radically simplified
without sacrificing its unique performance, thus making it amenable for such
a simulation. Regrettably, sequential ensemble learning schemes such as Ad-

aBoostM1 (Freund & Schapire, 1996) and Cascading (Gama & Brazdil, 2000) are
not amenable to such a simulation for a variety of reasons.

In Chapter 8, we visualize our twenty-six datasets and some of our extensive
experimental results by innovative methods from information visualization and
point out some interesting patterns which may aid future studies. We find that
the majority of examples are misclassified because none of the base classifiers
predict correctly. Although Stacking would potentially be able to learn from
such a setting, this is not observed. On the contrary, Stacking even predicts
incorrectly when a majority of base classifiers is right. Thus we found the field
of information visualization to be a valuable addition and inspiration for our
research and are looking forward to applying its methods to real-life problems
in the near future.

Appendix A contains full-page figures for all our datasets, taken from Chap-
ter 8: Information Visualization. Appendix B contains a recent Curriculum
Vitae for the author.

Chapter 9 concludes this thesis with a summary of our main findings, overall
conclusions and outlook on future research.

8

Chapter 2

Related Research

There are many approaches to combine multiple models without resorting to
ensemble learning schemes. Best known are simpler ensemble methods such
as Bagging (Breiman, 1996) and AdaBoost (Freund & Schapire, 1996), which
rely on training a set of diverse base classifiers (typically via different subsam-
ples of the training set), whose predictions are then combined by more-or-less
elaborate voting techniques, see e.g. (Bauer & Kohavi, 1999). Another group
of techniques, Meta-Learning, focusses on predicting the right algorithm for a
particular problem based on characteristics of the dataset (Brazdil, Gama &
Henry, 1994) or based on the performance of other, simpler learning algorithms
(Pfahringer et al., 2000). Finally, another common decision procedure (espe-
cially with larger datasets) is to take a subsample of the entire dataset and try
each algorithm on this sample. This approach was analyzed by Petrak (2000).

However, for the purposes of this chapter, we will concern ourselves with
research that is directly or indirectly concerned with Stacking, or other ensemble
learning schemes which also employ diverse component classifiers. Research of
this kind can roughly be grouped into three categories:

1. Choosing parameters for Stacking, i.e. base classifiers, meta classifier and
type of meta data to use. As this provides insight into how Stacking works,
we also have included other papers concerned with investigating aspects
of its behaviour.

2. Alternative Ensemble Learning Schemes. An example is Selection by
Crossvalidation (X-Val) which we mentioned earlier, and common unweighted
voting. We chose to restrict ourselves to those schemes which incorporate
more than a single learning algorithm bias and thus do not include Bagging

(Breiman, 1996) and AdaBoost (Freund & Schapire, 1996) here.

3. Extending non-ensemble learners, e.g. C4.5, to incorporate more and dif-
ferent biases. In a way this is complementary to Stacking: whereas Stack-

ing combines the output from its component classifiers without making
any assumptions about their internal structure, the mentioned approach
focusses on meshing classifiers to hopefully combine their strengths and
mitigate their weaknesses. So we also consider these extended learners to
be – somewhat distant – relatives to Stacking.

9

We will now consider each of these categories in turn, citing relevant papers and
explaining their relation to our work where appropriate. To emphasize recent
work, the papers appear in reverse chronological order.

2.1 Choosing Parameters & Providing Insight

Džeroski and Zenko (2002) investigate Stacking in the extension proposed by
Ting & Witten (1999). They conclude that, when comparing against other
ensemble learning schemes, Stacking with MLR as meta classifier is at best com-
petitive to selection by crossvalidation (X-Val) and not significantly better as
some papers claim. They propose a comparative study to resolve these and
other contradictions in the literature. One possible explanation may be that,
as Dietterich (1998) indicates, the widely used ten-times tenfold crossvalidated
t-Test is fatally flawed, and a five-times two-fold crossvalidated t-Test should be
employed instead.1 Another explanation may be that Stacking is subtly preferred
when compared via crossvalidation, since it also uses crossvalidation internally.
Results from Chapter 6 hint that other approaches to compare Stacking may be
less able to show its superiority, which is consistent with both hypotheses.

Seewald (2002a) investigates Stacking in the extension proposed by Ting &
Witten (1999). He claims a weakness of this extension which is not apparent in
the original version of Stacking and introduces a new variant, StackingC, in order
to compensate for this weakness. Empirical evidence is given and supports these
claims. An analysis into the reasons for improvement yields some interesting
insights, most notably that the reason for this improvement is not mainly the
dimensionality reduction of the meta dataset, but also the higher diversity of
the class models. An extended version of this paper can be found in Chapter 5

Dietterich (2000a) is also concerned with classifier ensembles where the com-
ponent classifiers are of the same type. It reviews Bagging, Randomization and
Boosting. Surprisingly, Dietterich’s definition of ensembles as given in (Di-
etterich, 2000b) does not to include Stacking. Thus, none of his papers are
concerned with Stacking – a regrettable oversight.

Ting & Witten (1999) deal with the type of generalizer suitable to derive
the higher-level model and the kind of attributes it should use as input. Their
main conclusion is that using class probability distributions is superior to using
predictions for the meta data, at least when MLR is the meta classifier. In Chap-
ter 3 we were able to confirm their result that MLR is the best meta classifier
for probability distribution meta data. But we also found that Stacking using
prediction meta data is competitive to using probability distribution meta data
for almost all meta classifiers – which disagrees with one of their main conclu-
sions. This can be explained by taking a close look at their paper and finding
that their definition of MLR differs from the common definition. In fact, they
compare a variant similar to StackingC to Stacking with predictions, which biases
their results strongly in favor of the former and thus in favor of Stacking with
probability distribution meta data – which explains their incorrect conclusion.
Using probability distributions instead of just predictions is essential to our vari-
ant StackingC, which will be introduced in Chapter 5, and other state-of-the-art

1In case of this alternative test, almost no significant differences are found between related
ensemble learning schemes (personal communication by B.Zenko)

10

variants such as sMM5 (Džeroski & Zenko, 2002). Ting & Witten also inves-
tigated the usefulness of non-negativity constraints for feature weights within
linear models, but found that these are inessential for best performance. How-
ever they found non-negativity constraints may be useful to facilitate human
comprehension of these models. Since our focus is on performance and not on
comprehensibility, we did not use non-negativity constraints.

Fan, Stolfo & Chan (1999) introduce a conflict-based accuracy estimate for
Stacking and evaluate them on four datasets, two of them artificial. Stacking is
used with one rule-based and two tree-based base classifiers and an unpruned
decision tree as meta learner. While they claim that their measure is better
than all other metrics previously proposed, it is not clear if their results will also
hold on a larger number of datasets or with other meta learners. Furthermore,
their approach relies on using predictions as meta data and would fail for class
probability distributions.

Bauer & Kohavi (1999) compare voting classification algorithms. While
they use Bias-Variance analysis to achieve insights about the sources of error
reduction, their analysis only investigates Bagging, Boosting and other ensem-
ble methods combining the same base algorithm, while our work is concerned
with Stacking which combines diverse base algorithms. Furthermore, they use
the zero-one loss decomposition by Kohavi & Wolpert (1996) which has been
severely critized.2

Skalak (1997) includes an excellent overview about methods for construct-
ing classifier ensembles. His other main contribution consists of investigating
ensembles of coarse instance-based classifiers storing only a few prototypes per
class, using ID3 as meta classifier. His results inspired us to re-evaluate meta
classifier choice for Stacking, see Chapter 3.

Ting (1997) proposes to use the predictions of base classifiers for learning a
function that maps the algorithms’ internal confidence measure (e.g., instance
typicality for nearest neighbor classifiers or a posteriori probabilities for Naive
Bayes classifiers) to an estimate of its accuracy on the output which could then
potentially be used to combine their expertise. If the classifiers output class
probability distributions which are strongly related to their internal confidence
measures – as would be expected –his approach is similar to Grading, investi-
gated by Seewald & Fürnkranz (2001); however, in his case a definitive learning
algorithm is neither given nor evaluated.

Brodley & Lane (1996) illustrate empirically that integration approaches
such as Stacking seem unable to exploit the diversity as measured by classification
overlap of the classifiers. They also describe a metric for choosing base classifiers
in order to maximize coverage. Diversity was achieved by different random
orderings and initializations of linear machines while Stacking achieves diversity
by exploiting machine learning bias of diverse base classifiers, so their results
are not directly applicable to our work.

2.2 Alternative Ensemble Learning Schemes

Džeroski and Zenko (2002) investigate Stacking in the extension proposed by
Ting & Witten (1999). They introduce a new variant sMM5 which they claim to

2Their case for a definitive zero-one loss function is much weaker than it appears (multiple
personal communications) Unfortunately we were unable to find a citation which states this.

11

be in a league of its own. Their new variant is quite competitive to our variant
StackingC (Chapter 5) but much slower, according to unpublished experiments.

Seewald & Fürnkranz (2001) re-evaluated a scheme called Grading that as-
sociates a meta-level classifier to each base classifier. Essentially, Grading trains
a referee for each base classifier which aims to predict when its base classifier
fails, on an example-by-example basis. This decision is based on the original
dataset’s attributes. A weighted voting of the base classifiers’ predictions gives
the final class prediction. The voting weight is the confidence for a correct pre-
diction of a base classifier, which is estimated by its associated meta classifier. In
Chapter 7, we will argue that Grading is essentially similar to accuracy-weighted
voting, which explains the observation that very different meta-level classifiers
still perform equally well.

Another approach with a similar goal, meta decision trees by (Todorovski &
Džeroski, 2000), aims at directly predicting which classifier is best to classify an
individual example. To this end, it uses information about statistical properties
of the predicted class distribution as attributes and predicts the right algorithm
from this information. The approach is not modular (in the sense that any
algorithm could be used at the meta-level) but implemented as a modification
to the decision tree learner C4.5. While their approach may make the combining
scheme more comprehensible by learning an explicit decision tree decision tree,
it is unclear whether this leads to better insight as well. Stacking and StackingC

using MLR as meta-learner also allow to determine relative importance of base
learners per class, simply by inspecting the weights of meta-level attributes after
training – this has e.g. been done by Ting & Witten (1999).

Cascading by Gama & Brazdil (2000) is a related variant to Stacking where
the classifiers are applied in sequence and there is no dedicated meta classifier.
Each base classifier, when applied to the data, adds its class probability distri-
bution to the data and returns an augmented dataset, which is to be used by
the next base classifier. Thus, the order in which the classifiers are executed
becomes important. Cascading does not use an internal crossvalidation like
most other ensemble learning schemes and is therefore claimed to be at least
three times faster than Stacking. On the other hand in Stacking the classifier
order is not important, thereby reducing the degrees of freedom and minimizing
chances for overfitting. Furthermore, cascading increases the dimensionality of
the dataset with each step whereas Stacking’s meta dataset has a dimensionality
which is independent of the dimensionality of the dataset – i.e. the number of
base classifiers multiplied with the number of classes.

Merz (1999) studies the use of correspondence analysis and lazy learning
to combine classifiers in a stacking-like setting. He compares his approach,
SCANN, to two stacking variants with NaiveBayes resp. a backpropagation-
trained neural network as meta-learner. MLR was not considered as meta-
learner. According to experiments with synthetic data, his approach is equiv-
alent to plurality vote if the models make uncorrelated errors. However, in
practice this is seldom the case. Moreover, his approach is limited to using
predictions as meta-level data and would fail for the class probability distri-
butions which we use. Still, correspondence analysis as a means of less static
dimensionality reduction of stacking meta-level data may have its merits.

Chan & Stolfo (1995) propose the use of arbiters and combiners. A combiner
is more or less identical to Stacking. Chan & Stolfo (1995) also investigate a
related form, which they call an attribute-combiner. In this architecture, the

12

original attributes are not replaced with the class predictions, but instead they
are added to them. As Schaffer (1994) shows in his paper about bi-level stacking,
this may result in worse performance.

An arbiter (Chan & Stolfo, 1995) is a separate, single classifier, which is
trained on a subset of the original data. This subset consists of examples on
which the base classifiers disagree. They also investigate arbiter trees, in which
arbiters that specialize in resolving conflicts between pairs of classifiers are orga-
nized in a binary decision tree. Arbiters use information about the disagreement
of classifiers for selecting a training set.

2.3 Extending non-ensemble learners

Combinations of decision tree with other learning algorithms have been studied
in various ways before. An early example of a hybrid decision tree algorithm is
presented by Utgoff (1988). Here, a decision tree learner is introduced that uses
linear threshold units at the leaf nodes; however, pruning is not considered as
the algorithm was expected to work only on noise-free domains.

In (Seewald et al., 2001), a decision tree learner is described which replaces
subtrees in post-pruning not only with leafs, but also with alternative leaf clas-
sifiers. Four common classifiers are considered. To be able to evaluate different
leaf classifiers, a separate pruning set was used, similar to Reduced Error Prun-
ing (Quinlan, 1987). The results are somewhat promising.

In (Gama & Brazdil, 1999) and (Gama, 1999) a decision tree learner named
LTree is introduced that computes new attributes as linear, quadratic or logis-
tic discriminant functions of attributes at each node; these are then also passed
down the tree. The leaf nodes are still basically majority classifiers, although the
class probability distributions on the path from the root are taken into account
via smoothing techniques. Results indicate that this offers significant improve-
ments, comparable to that by Stacking, while retaining some comprehensibility.

Kohavi (1996) introduces a decision tree learner named NBTree which has
Naive Bayes classifiers as leaf nodes and uses a split criterion that is based
directly on the performance of Naive Bayes classifiers in all first-level child nodes
(evaluated by crossvalidation) — an extremely expensive procedure. The tree
size is determined by a simple stopping criterion and no postpruning is done.
The results are mildly positive; in most cases, NBTree outperforms one, in a few
cases both of its constituent base learners. In (Kohavi, 1996) it is also pointed
out that the size of the trees induced by NBTree is often substantially smaller
than the original C4.5 trees. This is not of obvious practical significance: The
hybrid trees may be smaller, but that does not necessarily make them more
comprehensible to the user, due to the more complex models at the leaves.

A recursive bayesian classifier is introduced by Langley (1993). The main
idea is to split the data recursively into partitions where the conditional in-
dependence assumption holds. The experimental results are somewhat disap-
pointing – the author managed to show superiority of his method over simple
Naive Bayes only on synthetic (and noise-free) data specifically generated for
his experiments. Pre- and postpruning are also not implemented.

13

2.4 Conclusion

While we saw there is a lot of research indirectly concerned with ensemble learn-
ing schemes, only little research is directly related to investigating Stacking, the
most general such scheme. A stronger research focus – outside the scope of
this thesis – seems to be on simpler ensemble learning schemes such as Bagging

(Breiman, 1996) and AdaBoost (Freund & Schapire, 1996), which combine only a
single kind of classifier. While we believe that the current variants StackingC and
sMM5 are very close to the optimum3, we hope that our comprehensive overview
on related research stimulates further work in ensemble learning and applying
ensembles in other research areas such as Game Playing, Self-Diagnosing Sys-
tems and BioInformatics.

3In fact several experiments concerned with improving performance further, e.g. by com-
bining both current variants, amply demonstrated the law of diminishing returns.

14

Chapter 3

Exploring the Parameter

State Space

Ensemble learning schemes are a new field in data mining. While current re-
search concentrates mainly on improving the performance of single learning
algorithms, an alternative is to combine learners with different biases. Stacking

is an ensemble learning scheme which tries to combine learners’ predictions or
confidences via another learning algorithm. However, the adoption of Stacking

into the data mining community is hampered by its large parameter space, con-
sisting mainly of other learning algorithms: (1) the set of learning algorithms
to combine, (2) the meta-learner responsible for the combining and (3) the type
of meta data to use: confidences or predictions. None of these parameters are
obvious choices. Furthermore, little is known about the relation between pa-
rameter settings and performance of Stacking. By exploring all of Stacking’s
parameter settings and their interdependencies, we intend to make Stacking a
suitable choice for mainstream data mining applications. This chapter is based
on the paper (Seewald, 2002c).

3.1 Introduction

The basic idea of the ensemble learning scheme Stacking is to use the predictions
of base classifiers as attributes in a new training set that keeps the original class
labels. Stacking thus utilizes a meta classifier to combine the predictions from
several base classifiers which were estimated via crossvalidation on the training
data. Any classifier may be used as base and/or meta classifier. We shall refer
to the type of meta data consisting of base classifiers predictions as preds.

A straightforward extension of this approach is using class probability distri-
butions of the original classifiers1 which convey not only prediction information,
but also confidence for all classes. We shall call the meta data of this extension
class-probs. This approach was evaluated and found to be superior to Stack-

ing with predictions in (Ting & Witten, 1999), provided multi-response linear
regression (MLR) is used as meta classifier.

1Every prediction is replaced by a vector of probabilities, consisting of one probability
value for each class.

15

Table 3.1: This table shows a ranking of all ensemble learning schemes. Ranks
are given as significant Wins/Losses with the wins counting for the algorithm in
the row (=BetterScheme). Significant differences were determined via a χ2 test
after McNemar with 95% significance level, based on data from a single ten-
fold crossvalidation. All schemes use the set of four diverse base classifiers from
section 3.3; except Bagging and AdaBoostM1 which both use C4.5 with twenty-five
bags resp. iterations.

BetterScheme X-Val Grading StackingC Voting AdaBoostM1 Bagging

X-Val 0/0 3/3 1/3 4/3
Grading 3/3 0/0 3/4 0/2
StackingC 3/1 4/3 0/0 5/2 6/0 5/1
Voting 3/4 2/0 2/5 0/0

While approaches such as boosting (Freund & Schapire, 1996) and bagging
(Breiman, 1996), which combine classifiers of the same type, have been used
extensively in data mining, Stacking has not.

As short motivation, consider that in terms of significant performance dif-
ferences on our datasets, the most recent scheme StackingC2 wins five times and
loses only once against AdaBoostM1 and wins six times and never loses against
Bagging. More results can be found in Table 3.1. StackingC performs better than
its competitors, even though much less research has been focused on improving
Stacking! Why then has Stacking not been adopted more widely? Tentatively we
can suggest some reasons: For once, Stacking requires an integrated workbench
including common machine learning classifiers. As of the time of writing this
chapter, two of the largest commercially available data mining tools lack a ba-
sic machine learning classifier, NaiveBayes. The added complexity of managing
ensemble schemes may also play a role. But most significantly, Stacking requires
a lot of non-obvious parameters: which base classifiers to choose, which meta
classifier to choose and also the type of meta data – either predictions as in the
original proposal by Wolpert (1992) or complete probability distributions as in
the extension proposed by Ting & Witten (1999).

Thus we felt it was time to investigate parameter settings for Stacking sys-
tematically to see how various parameters contribute to Stacking’s performance,
in order to see where sensible areas for further improvement may lie, but also to
give useful proposals for all parameter settings. We investigate both the original
Stacking (Wolpert, 1992) and the extension (Ting & Witten, 1999) here.

3.2 Overview

At first, Section 3.3 will present the experimental setup, the datasets and clas-
sifiers considered and details on significance tests and alpha-confidence levels.

In Section 3.4 we address the choice of base classifiers, using MLR as meta
classifier as proposed by (Ting & Witten, 1999). We show that it is quite hard
to significantly beat the trivial choice of using all available base classifiers and

2i.e. Stacking with a fixed specialized meta classifier based on MLR, see Chapter 5.

16

even harder to beat an informed choice of four base classifiers chosen via a priori
and a posteriori arguments on diversity and base classifier performance. This
makes base classifier choice the least influential factor on Stacking’s performance.
Intuitively, we would also expect that the know-how to combine the output of
classifiers is more important than which classifiers to combine, as long as a
reasonably large and diverse set is chosen.

In Section 3.5 we address both meta classifier choice and type of meta data
to be used, on two subsets of base classifiers. We show that MLR is indeed the
best classifier for preds meta data, among those we considered. We notice that
the performance differerences of those variants using preds meta data are much
smaller than of the variants for class-probs meta data, which indicates that
the learning problem for preds is easier for most classifiers. NaiveBayes seems a
reasonable if somewhat arbitrary choice for preds meta data. At last we conclude
that Stacking with predictions meta data is competitive to using probability
distribution meta data. We point out that Ting & Witten (1999) may have
used a variation of MLR similar in spirit to StackingC in their experiments which
yields a biased comparison and may explain why their conclusion as to the
merits of the different meta data types differs from ours.

In Section 3.6, Related Research, we give a short overview on relevant re-
search. We will now proceed to shortly characterize our experimental setup.

3.3 Experimental Setup

For our empirical evaluation we chose twenty-six datasets from the UCI Ma-
chine Learning Repository (Blake & Merz, 1998), shown in Table 3.2. These
datasets include fourteen multi-class and twelve two-class problems. Reported
accuracy estimates are from a single ten-fold stratified crossvalidation. Signif-
icant differences were evaluated by a χ2-test after McNemar3 with significance
level of 95%, unless otherwise noted.

As base classifiers for Stacking we considered the following seven base learners,
which were chosen to cover a variety of different biases. For figures, classifier
numbers are used instead of proper names.

1. J48: a Java port of C4.5 Release 8 (Quinlan, 1993a)

2. KStar: the K* instance-based learner (Cleary & Trigg, 1995)

3. MLR: a multi-class learner which tries to separate each class from all other
classes by linear regression (multi-response linear regression)

4. NaiveBayes: the Naive Bayes classifier using kernel density estimation over
multiple values for continuous attributes, instead of assuming a simple
normal distribution.

5. DecisionTable: a decision table learner.

6. IBk: the IBk instance-based learner with K = 1 nearest neighbors, in order
to offset KStar with a maximally local learner.

7. KernelDensity: a simple kernel density classifier.

3Dietterich (1998) proposes this test when the investigated algorithm can be run only once.

17

Table 3.2: The used datasets with number of classes and examples, discrete and
continuous attributes, baseline accuracy (%) and entropy in bits per example
(Kononenko & Bratko, 1991).

Dataset cl Inst disc cont bL E

audiology 24 226 69 0 25.22 3.51
autos 7 205 10 16 32.68 2.29
balance-scale 3 625 0 4 45.76 1.32
breast-cancer 2 286 10 0 70.28 0.88
breast-w 2 699 0 9 65.52 0.93
colic 2 368 16 7 63.04 0.95
credit-a 2 690 9 6 55.51 0.99
credit-g 2 1000 13 7 70.00 0.88
diabetes 2 768 0 8 65.10 0.93
glass 7 214 0 9 35.51 2.19
heart-c 5 303 7 6 54.46 1.01
heart-h 5 294 7 6 63.95 0.96
heart-statlog 2 270 0 13 55.56 0.99
hepatitis 2 155 13 6 79.35 0.74
ionosphere 2 351 0 34 64.10 0.94
iris 3 150 0 4 33.33 1.58
labor 2 57 8 8 64.91 0.94
lymph 4 148 15 3 54.73 1.24
primary-t. 22 339 17 0 24.78 3.68
segment 7 2310 0 19 14.29 2.81
sonar 2 208 0 60 53.37 1.00
soybean 19 683 35 0 13.47 3.84
vehicle 4 846 0 18 25.41 2.00
vote 2 435 16 0 61.38 0.96
vowel 11 990 3 10 9.09 3.46
zoo 7 101 16 2 40.59 2.41

All algorithms are implemented in WEKA Release 3.1.8. Each of them returns
a class probability distribution, i.e. they do not predict a single class, but give
probability estimates for each possible class. Parameters for learning schemes
which have not been mentioned were left at their default values.

These algorithms can be clustered into four natural groups4 by their internal
structure, where the first member tends to give better results than the others.

• J48, DecisionTable

• NaiveBayes

• MLR

• KStar, IBk, KernelDensity

Surprisingly – as we found out during our experiments – this can also be sup-
ported empirically. In particular, the statistical correlation of accuracies within

4A group with a single member is still considered a group by us, although in that case
inner-group correlation and diversity are trivial to compute. However, intra-group measures
are still reasonable.

18

each group is always greater than 0.95 while it is much smaller between clas-
sifiers from different groups. Thus, the structure of correlations allows us to
determine these same groups empirically.5 So we considered not only the trivial
set of all seven base classifiers, but also the set of four base classifiers J48, Naive-

Bayes, MLR and KStar by choosing from each correlated subgroup the classifier
which performed best by geometric mean of accuracy ratio.

We define a variant as a specific Stacking algorithm of which all parameters
– type of meta data, meta classifier, and the set of base classifiers – are known.
Meta data class-probs is signified by the prefix St, preds is signified by the prefix
StP. After this prefix, 7B refers to the full set of base classifiers while 4B refers
to the set of four diverse base classifiers mentioned in Section 3.3. After this,
a hyphen precedes the meta classifier’s name or an abbreviation. E.g. St7B-
MLR refers to Stacking with the full set of seven base classifiers, MLR as meta
classifier and class-probs as type of meta data while StP7B-MLR refers to the
same variant with preds as meta data. In Section 3.5, we will define stacking
groups as those variants which just differ in the meta classifier. These are named
without reference to the meta classifier.

3.4 Base Classifier Choice

In this section we investigate Stacking variants with MLR as meta classifier6 and
any non-empty subset of our seven base classifiers as base classifiers7. Because
of the large number of comparisons, we used a significance level of 99% here
to reduce our alpha-error. If we consider using all seven base classifiers (St7B-
MLR) as gold standard, about one tenth of our variants are significantly better
than St7B-MLR on any dataset; the rest shows no significant differences or are
frequently even significantly worse. Figure 3.1 shows all our variants as accuracy
ratios vs. St7B-MLR. One variant corresponds to a specific instantiation of
Stacking with a non-empty subset from our seven base classifiers, always with
MLR as meta classifier, on class-probs meta data. We have grouped the variants
according to the size of the subset of base classifiers, from one to six.

Although at least some variants seem to offer considerable improvements on
accuracy, this by no means assures a significant difference. We have considered
two approaches to take significance into account.

At first we determined those variants which, over all datasets, never lose
significantly against St7B-MLR and win as often as possible. It turns out that
the maximum number of wins is only three, i.e. 11.5% of our datasets, which
is somewhat disappointing. If we compare against St4B-MLR8 instead, the
maximum number of wins falls to zero. Concluding, dataset-independent variant
resp. base classifier choice is not able to improve upon St4B-MLR here, even
by hindsight.

5A preliminary analysis of the κ-statistic – a measure of diversity due to (Dietterich, 2000b)
– is also compatible with this finding: the inner-group diversity between classifiers from the
same group is generally smaller than the diversity between classifiers from different groups.

6...in the extension proposed by (Ting & Witten, 1999): using complete class probability
distributions as meta-level data.

7128 variants per dataset.
8Stacking with the set of four diverse base classifiers we mentioned earlier. As we will see,

this variant is slightly better than St7B-MLR.

19

0 1 2 3 4 5 6 7

10
−0.4

10
−0.3

10
−0.2

10
−0.1

10
0

Num. of base classifiers

A
cc

ur
ac

y−
R

at
io

 v
s.

 S
ta

ck
in

g
w

/ a
ll

se
ve

n
ba

se
 c

la
ss

ifi
er

s
Relative Performance vs. Stacking w/ all seven base classifiers

Figure 3.1: This figure shows the improvement of Stacking variants with different
numbers of base classifiers and MLR as meta classifier, where all possible subsets
of base classifiers were considered, as AccStV ariant

AccSt7B−MLR
. The dotted line indicates a

ratio of 1.0. Each • shows the ratio from one dataset and variant. Average and
standard deviation over all subsets with the same number of base classifiers are
shown as error bars.

If we were to consider a dataset-dependent choice of variants resp. base
classifiers, i.e. possibly choosing a different variant for each dataset, the results
are still quite disappointing. While the maximum number of wins is 7 (26.9%)
vs. St7B-MLR, it is only 2 (7.7%) vs. St4B-MLR.9 Thus, even if we would
resort to Meta-Learning and found a model which lets us choose variants as
good as by hindsight – which is doubtful to say the least – the improvements
would still be quite insignificant.

So, in the remainder of this chapter, we just consider two sets of base clas-
sifiers: the trivial choice of using all seven (those used by St7B-MLR), but also
the subset of four diverse ones (those used by St4B-MLR) we mentioned in the
last section. This is motivated by the wish to investigate both meta classifier
choice and base classifier choice, even if quite coarse-grained, in one setup.

9The maximum number of wins is even just 1 (3.9%) for StackingC with the full set of
seven base classifiers.

20

Table 3.3: This table shows the significant wins minus losses for each variant,
against the other three meta classifiers.

Variant J48 KStar MLR NB

St7B 2 -26 16 8
St4B -2 -19 19 2
StP7B -1 0 1 0
StP4B 2 -9 1 6

Table 3.4: This table shows the improvements of Figures 3.2, 3.3, 3.4 and 3.5, in
that order, in terms of significant wins and losses for the first mentioned variant.

Comparison J48 KStar MLR NB

St7B vs. StP7B 1/5 1/14 4/3 1/4
St4B vs. StP4B 1/4 1/11 2/0 1/4
St4B vs. St7B 2/2 3/2 4/0 1/2

StP4B vs. StP7B 2/0 1/3 2/1 3/4

3.5 Meta Classifier Choice

In this section, we investigate Stacking variants along three independent dimen-
sions – which are indeed all possible dimensions for Stacking’s parameters.

1. Different meta classifiers, chosen from our set of four diverse classifiers
from Section 3.3 (numbers 1-4).

2. Type of meta data: either predictions = preds or complete class probability
distributions = class-probs.

3. Base Classifiers: the set of four resp. seven base classifiers from Section 3.3,
as maximally coarse-grained base classifier choice.

What concerns us most of all are the first two dimensions, i.e. to determine
which meta classifier is best, depending on type of meta data; and whether or not
one type of meta data can be considered unconditionally superior. However, the
third dimension can still roughly tell us the susceptibility of each meta classifier
to changes in its set of base classifiers and thus give us the opportunity to also
investigate coarse-grained base classifier choice at little additional cost.

The second and third dimension gives the name to our Stacking group – i.e.
St4B, St7B for class-probs meta data10 and StP4B, StP7B for preds meta data.
The meta classifier is usually shown as an additional dimension in tables or
figures, so all parameters are hereby accounted for.

To determine which meta classifier is best, we resorted to a standard ranking
of all meta classifiers, separately for each stacking group. Table 3.3 shows wins
minus losses of each meta classifier versus all other meta classifiers, for each
group separately.

10which we consider to be the default case

21

A short glance at the table reveals some insights: For class-probs meta data
MLR is clearly the best meta classifier, which was also shown by Ting & Witten
(1999). However, for preds meta data StP7B and StP4B disagree – the latter
considers NaiveBayes superior while the former prefers MLR; with NaiveBayes and
KStar both on a very close second place. The wins and losses are smaller than
for St7B and St4B which indicates that meta classifier choice seems to make
less difference for predictions meta data. This is to be expected since most
classifiers are best suited to process nominal data, thus their performance as
meta classifiers is better and – since there is an upper limit on accuracy – tends
to be more similar than for continuous data.

If we had to choose any one classifier for prediction meta data, NaiveBayes

seems the logical choice – it is not inconceivable that NaiveBayes ended up on
second place because the ranking may be a little noisy; after all the difference
is only one. A priori, the Bayesian approach inherent in NaiveBayes seems a
suitable way to combine confidences from the base classifiers, but in practice
this seems to work well only for preds meta data. It may be that the modelling
of continuous attributes by multiple kernels is not appropriate for this task
and that a simple normal distribution may be more useful. This would explain
why in our case, NaiveBayes performs clearly better with preds – as does J48 –
and not equally well on class-probs and preds, as Ting & Witten (1999) found.
Interestingly, both KStar and IBk do not perform better on class-probs meta data
– rather, they are those meta classifiers with the highest number of significant
losses on class-probs vs. preds. This also contradicts Ting & Witten (1999),
who concluded that IB1 performs better on class-probs. Further work is needed
to resolve these contradictory results.

Now we will investigate whether one type of meta data can be considered
superior. For this, we determined accuracy ratios of St7B vs. StP7B and St4B
vs. StP4B respectively, see Figure 3.2 and 3.3. The ranking in Table 3.4 shows
it more clearly: While MLR performs better on class-probs meta data, all other
considered meta classifiers perform better on preds, i.e. nominal, meta data.
The latter is to be expected since most machine learning algorithms are best
suited to process nominal data.

This seems to contradict Ting & Witten (1999) who concluded that no meta
classifier on prediction meta data offered satisfactory performance. However,
their definition of MLR is different: each linear model had as input data only
those partial class probability distributions concerned with the class it was try-
ing to predict. So the dimensionality of the input data was smaller for MLR

by a factor equal to the number of classes, which makes the mentioned com-
parison somewhat biased. If we try to replicate their results and replace MLR

with their modified version11, it is easily the best meta classifier with a large
margin – which explains their early dismissal of Stacking with preds meta data.
Concluding, Stacking with probability distributions (class-probs) is competitive
to classic Stacking with predictions (preds). However, some Stacking variants
based on class-probs perform significantly better than both, as shown in Chap-
ter 5. That is not to say that Stacking with predictions cannot be improved
in the future – it remains an interesting research topic and should not yet be
dismissed.

11i.e. equivalent to StackingC.

22

1 2 3 4 4.5

10
−0.1

10
0

Classifier Number

A
cc

ur
ac

y−
R

at
io

 S
t7

B
/S

tP
7B

Relative Performance St7B vs. StP7B

Figure 3.2: Improvement of St7B over StP7B, i.e. using probability distributions
meta data vs. prediction meta data, as AccSt7B

AccStP7B
. The dotted line indicates a

ratio of 1.0. Each • shows the ratio from one dataset. Average and standard
deviation over all datasets are shown as error bars.

1 2 3 4

10
−0.1

10
0

Classifier Number

A
cc

ur
ac

y−
R

at
io

 S
t4

B
/S

tP
4B

Relative Performance St4B vs. StP4B

Figure 3.3: Improvement of St4B over StP4B, i.e. using probability distributions
meta data vs. prediction meta data, as AccSt4B

AccStP4B
. The dotted line indicates a

ratio of 1.0. Each • shows the ratio from one dataset. Average and standard
deviation over all datasets are shown as error bars.

23

1 2 3 4

10
−0.01

10
0

10
0.01

10
0.02

10
0.03

10
0.04

10
0.05

10
0.06

Classifier Number

A
cc

ur
ac

y−
R

at
io

 S
t4

B
/S

t7
B

Relative Performance St4B vs. St7B

Figure 3.4: Improvement of St4B over St7B, i.e. using only four base learners
vs. using all seven for probability distributions meta data, as AccSt4B

AccSt7B
. The

dotted line indicates a ratio of 1.0. Each • shows the ratio from one dataset.
Average and standard deviation over all datasets are shown as error bars.

1 2 3 4

10
−0.02

10
−0.01

10
0

10
0.01

10
0.02

10
0.03

Classifier Number

A
cc

ur
ac

y−
R

at
io

 S
tP

4B
/S

tP
7B

Relative Performance StP4B vs. StP7B

Figure 3.5: Improvement of StP4B over StP7B, i.e. using only four base learners
vs. using all seven for predictions meta data, as AccStP4B

AccStP7B
. The dotted line

indicates a ratio of 1.0. Each • shows the ratio from one dataset. Average and
standard deviation over all datasets are shown as error bars.

24

Now we were interested in the difference between using four base and all our
seven base classifiers, see Figure 3.4 and 3.5. In the former case, we see that
St4B is usually better and in four cases even significantly better when using
MLR as meta classifier. In the latter case we see the same picture, but even less
difference.12 So we tenatively conclude that on average Stacking does seem to
work better with a smaller set of less similar base classifiers, especially when
using continuous meta-level data.

3.6 Related Research

Seewald (2002a) investigates Stacking in the extension proposed by Ting & Wit-
ten (1999). He claims a weakness of this extension which is not apparent in the
original version of Stacking and introduces a new variant, StackingC, in order to
compensate for this weakness. Empirical evidence is given and supports these
claims. An analysis into the reasons for improvement yields some interesting
insights, most notably that the reason for this improvement is not mainly the
dimensionality reduction of the meta dataset, but also the higher diversity of
the class models.

Džeroski and Zenko (2002) investigate Stacking in the extension proposed
by Ting & Witten (1999). They conclude that, when comparing against other
ensemble learning schemes, Stacking with MLR as meta classifier is at best com-
petitive to selection by crossvalidation (X-Val) and not significantly better as
some papers claim, while their new variant sMM5 clearly beats X-Val. They
propose a comparative study to resolve these contradictions in the literature.

Seewald & Fürnkranz (2001) propose a scheme called Grading that learns a
meta-level classifier for each base classifier. Grading trains a meta classifier for
each base classifier which tries to predict when its base classifier fails. This
decision is based on the dataset’s attributes. A weighted voting of the base
classifiers’ prediction gives the final class prediction. The voting weight is the
confidence for a correct prediction of a base classifier, which is estimated by its
associated meta classifier.

Cascading by Gama & Brazdil (2000) is a related variant to Stacking where
the classifiers are applied in sequence and there is no dedicated level 1 classifier.
Each base classifier, when applied to the data, adds his class probability distri-
bution to the data and returns an augmented dataset, which is to be used by
the next base classifier. Thus, the order in which the classifiers are executed be-
comes important. Cascading does not use an internal crossvalidation like most
other ensemble learning schemes and is therefore claimed to be at least three
times faster than Stacking. On the other hand in Stacking the classifier order is
not important, thereby reducing the degrees of freedom and minimizing chances
for overfitting. Furthermore, cascading increases the dimensionality of the meta
dataset with each step whereas Stacking’s meta dataset has a dimensionality
which is independent of the dimensionality of the dataset, i.e. the number of
base classifiers multiplied with the number of classes.

Todorovski & Džeroski (2000) introduce a novel method to combine multiple
models. Instead of directly predicting the final class as all combining schemes

12We noted that for StackingC, the difference is even less, i.e. 1.0012±0.0117 for the
accuracy ratio of 4B vs. 7B – making it the scheme least susceptible to our coarse base
classifier choice.

25

we considered, their meta-learner MDT, based on C4.5, specifies which model
to use for each example based on statistical and information theoretic measures
computed from the class probability distribution. While their approach may
make the combining scheme more comprehensible by learning an explicit de-
cision tree decision tree, it is unclear whether this leads to better insight as
well.

Merz (1999) studies the use of correspondence analysis and lazy learning
to combine classifiers in a stacking-like setting. He compares his approach,
SCANN, to two Stacking-variants with NaiveBayes resp. a backpropagation-
trained neural network as meta-learner. MLR was not considered as meta-
learner. According to experiments with synthetic data, his approach is equiv-
alent to plurality vote if the models make uncorrelated errors. However, in
practice this is seldom the case. Moreover, his approach is limited to using pre-
dictions as meta-level data and would fail for the class probability distributions
which we use.

Ting & Witten (1999) deal with the type of generalizer suitable to derive
the higher-level model and the kind of attributes it should use as input. Com-
ments and remarks concerning their paper can be found throughout this chapter.
Additionally, they investigated the usefulness of non-negativity constraints for
feature weights within linear models, but found that it is not essential to get the
best performance. However they found this may be useful to facilitate human
comprehension of these models. Since our focus was on performance and not on
comprehensibility, we did not use a non-negativity constraint.

Skalak (1997) includes an excellent overview about methods for construct-
ing classifier ensembles. His other main contribution consists of investigating
ensembles of coarse instance-based classifiers storing only a few prototypes per
class.

Chan & Stolfo (1995) propose the use of arbiters and combiners. A combiner
is more or less identical to Stacking. Chan & Stolfo (1995) also investigate a
related form, which they call an attribute-combiner. In this architecture, the
original attributes are not replaced with the class predictions, but instead they
are added to them. As Schaffer (1994) shows in his paper about bi-level stacking,
this may result in worse performance.

3.7 Conclusion

We have explored the parameter state space of Stacking. Concerning the choice of
base classifiers, we have found a set of four base classifiers, chosen by a priori and
a posteriori arguments, which performs best. However, using all available base
classifiers also remains an acceptable option, although the performance may be
slightly worse13 since the dimensionality of the meta dataset is increased. When
using predictions meta data, the performance difference tends to be smaller,
probably because most machine learning algorithms are better suited to deal
with nominal data and therefore seem to exhibit less vulnerability to curse-of-
dimensionality.

13In our case, a penalty of at most four significant losses on twenty-six datasets is observed.
Dependent on the type of meta data and meta classifier which is used, this may be much less
– e.g. for StackingC, it is only one loss.

26

Concerning the choice of meta classifier and choice of meta data to be used,
we have found that MLR is indeed the best meta classifier for probability dis-
tribution data. We showed probability distribution meta data and predictions
meta data to perform comparably. For predictions meta data, the best meta
classifier has less advantage because of less performance variation among the
meta classifiers. NaiveBayes is a reasonable choice since it is once on first and
once on a very close second place.

We believe that repeating our extensive base classifier experiments with a
current variant, StackingC (see Chapter 5), will not yield new insights. Because
StackingC can be viewed as meta classifier for probability distribution meta data,
we can see it as alternative meta classifier. As such, we have investigated the
distribution of accuracy ratios StC4B by StC7B and found it to be quite sym-
metric around 1.0, with the smallest standard deviation of all meta classifiers for
St4B by St7B (Fig.3.4). Thus, StackingC seems to be least influenced by specific
sets of base classifiers, which leads us to expect that base classifier choice has
even less influence on StackingC than it has on Stacking. It still remains to be
investigated whether this is also true for sMM5.

We hope that future research in Stacking will stay as exciting and interesting
as it has been in the past and that our parameter proposals will bring the general
ensemble learning scheme Stacking nearer to main-stream data mining.

27

Chapter 4

Meta-Learning for Stacking

In this chapter we describe new experiments with the ensemble learning method
Stacking. The central question in these experiments was whether meta-learning
methods can be used to accurately predict various aspects of Stacking’s be-
haviour. The resulting contributions of this chapter are two-fold: When learn-
ing to predict the accuracy of Stacking, we found that the single most important
feature is the accuracy of the best base classifier. A simple linear model in-
volving just this feature turns out to be surprisingly accurate. When learning
to predict significant differences between Stacking and three related ensemble
learning methods, we have found simple models, all but one of which are based
on single features which can be efficiently computed directly from the dataset.
For one of these models, we were able to offer a tentative interpretation. These
models may ultimately be used to decide in advance which ensemble learning
scheme to use on a given dataset, since neither of them is always the best choice.
Furthermore, aiming to understand these models can lead to new insights into
Stacking’s behaviour. This chapter is an extended version of (Seewald, 2002b).

4.1 Introduction

Meta-Learning1 focusses on predicting the right algorithm for a particular prob-
lem based on characteristics of the dataset (Brazdil, Gama & Henry, 1994) or
based on the performance of other, simpler learning algorithms (Pfahringer et
al., 2000). Here we are concerned with Meta-Learning of ensemble learning
schemes. Stacking can be considered the most general such scheme and was in-
troduced in (Wolpert, 1992). However, here we use the extension due to Ting
& Witten (1999). We take a more general view of Meta-Learning and use it to
predict two aspects of Stacking’s behaviour: accuracy as estimated via ten-fold
crossvalidation; and also significant differences vs. related ensemble learning
schemes as estimated via t-Test.

We will now describe our experimental setup and our two sets of features
describing dataset characteristics and base classifier accuracy & diversity. Then
we will give results for predicting the accuracy of Stacking, followed by Meta-

1The term Meta-Learning is used elsewhere to refer to learning from the output of compo-
nent classifiers in ensemble learning schemes – so in a sense we achieve to relate both aspects
of this term in this chapter.

28

Learning of significant differences. Afterwards we give a short overview on
related Meta-Learning research.

4.2 Experimental setup

In our experiments, we used twenty-six datasets from the UCI machine learning
repository (Blake & Merz, 1998). Details can be found in Table 3.2. We used
Stacking with all of the following seven base classifiers for our experiments, which
were chosen in an attempt to maximize diversity. All algorithms were taken
from the Waikato Environment for Knowledge Analysis (WEKA2), Version 3-
1-8. Learning algorithm parameters which have not been mentioned have been
left at their default settings.

• DecisionTable: a decision table learner.

• IBk: the IBk instance-based learner using K=1 nearest neighbors. K=1
was chosen to offset the K* algorithm with a maximally local learner.

• J48: a Java port of C4.5 Release 8 (Quinlan, 1993a)

• KernelDensity: a simple kernel density classifier.

• KStar: the K* instance-based learner (Cleary & Trigg, 1995), using all
nearest neighbors and an entropy-based distance function.

• MLR: a multi-class learner based on linear regression, which tries to sep-
arate each class from all other classes by linear discrimination (Multi-
response Linear Regression)

• NaiveBayes: the Naive Bayes classifier using multiple kernel density esti-
mation (-K) for numeric attributes.

We used the following four ensemble learning schemes.

• Stacking is the stacking algorithm as implemented in WEKA, which follows
(Ting & Witten, 1999). It constructs the meta dataset by adding the
entire predicted class probability distribution instead of only the most
likely class. We used MLR as the level 1 learner.3

• X-Val chooses the best base classifier on each fold by an internal ten-fold
CV. This is just the selection by crossvalidation we mentioned in the
beginning.

• Voting is a straight-forward adaptation of voting for distribution classifiers.
Instead of giving its entire vote to the class it considers to be most likely,
each classifier is allowed to split its vote according to the base classifier’s
estimate of the class probability distribution for the example. I.e. the
mean class distribution of all classifiers is calculated. It is the only scheme
which does not use an expensive internal crossvalidation.

2The Java source code of WEKA has been made available at www.cs.waikato.ac.nz.
3Relatively global and smooth level-1 (=meta) generalizers should perform well (Wolpert,

1992; Ting & Witten, 1999).

29

• Grading is an implementation of the grading algorithm evaluated in (See-
wald & Fürnkranz, 2001) which uses IBk (K = 10) as meta classifier.
Basically, Grading trains a meta classifier for each base classifier which
tries to predict when its base classifier fails. This decision is based on the
dataset’s attributes. A weighted voting of the base classifiers’ prediction
gives the final class prediction. The voting weight is the confidence for a
correct prediction of a base classifier, which is estimated by its associated
meta classifier.

We used seventeen dataset-related features which uniquely characterize the
dataset. These were inspired by the StatLOG project (Brazdil, Gama & Henry,
1994). Space restrictions prevent us from giving exact formulas for each case,
but a reference implementation is available from the author upon request.

• Inst, the number of examples.

• ln(Inst), the natural logarithm of Inst.

• Classes, the number of classes.

• NumAttrs, the number of attributes (excluding the class)

• PropNomAttrs, number of nominal attributes as a proportion of NumAt-
trs : #NominalAttrs

NumAttrs

• PropContAttrs, number of numeric attributes as a proportion of NumAt-
trs : #ContinuousAttrs

NumAttrs

• PropBinAttrs, number of binary-valued nominal attributes as a proportion
of NumAttrs : #BinaryAttrs

NumAttrs

• ClassEntropy, the entropy of the class attribute: −
∑Classes

i=1 xldx#Classi

Inst

where #Classi is the number of examples with class i and xldx(y) =
y ∗ log2y. For proper handling of zero counts, we force xldx(0) = 0.

• AttrEntropy, mean attribute entropy: − 1
NumAttrs

∑NumAttrs
j=1

∑

∀i xldx
#AttrjV ali

Inst

#AttrjV ali is the number of examples where the jth attribute takes on
its ith value. For this and the next feature, continuous attributes were
discretized via equal-width binning and Inst

10∗Classes
bins.

• MutualEntropy, mean mutual entropy between attributes and the class:
AttrEntropy+ 1

NumAttrs

∑NumAttrs

j=1

∑Classes

k=1
#Classk

Inst

∑

∀i xldx
#AttrjV aliClassk

#Classk
,

where #AttrjV aliClassk is the number of examples where the jth at-
tributes takes on its ith value and the class is equal to k.

• EquivAttrs, the equivalent number of attributes, ClassEntropy
MutualEntropy

• RelEquivAttrs, EquivAttrs
NumAttrs

• S/N, the signal-to-noise ratio: MutualEntropy
AttrEntropy−MutualEntropy

• MeanAbsCorr, the mean absolute pairwise correlation over all unique
pairs of numeric attributes and each class separately, where Corr(x, y) =

∑

∀i
(xi−x)∗(yi−y)

√

|
∑

∀i
(xi−x)2

∑

∀i
(yi−y)2|

30

• MeanAbsSkew, the mean absolute skew over all numeric attributes, where
Skew(x) = 1

n

∑n

i=1 (xi−x
stDev(x))

3

• MeanAbsKurtosis, the mean absolute kurtosis over all numeric attributes,
where Kurtosis(x) = 1

n

∑n

i=1 (xi−x
stDev(x))

4 − 3

• defAcc, the default or base-line accuracy, i.e. the proportion of the most
common class – the expected performance of a trivial classifier which al-
ways predicts the most common class from training data.

Additionally, we used the accuracies of our seven base-learners as features. We
also calculated standard statistical features of this set of seven accuracies. Fur-
thermore, we used the same statistical features over pairwise base classifier
κ-statistics4, a measure of diversity due to (Dietterich, 2000b).

• Seven accuracy values, one for each base classifier (DT, IBk-K1, J48, KD,
KStar, MLR, NB-K)

• Eight statistical features describing the set of accuracy values (MinAcc,
MaxAcc, MeanAcc, StDevAcc, SkewAcc, SkewAcc2, KurtosisAcc, relRangeAcc
= MaxAcc−MinAcc

StDevAcc
)

• Eight statistical features describing the set of all pairwise κ-statistics be-
tween base classifiers (MinK, MaxK, MeanK, StDevK, SkewK, SkewK2,
KurtosisK, relRangeK)

• relMeanAcc=AvgAcc
defAcc

, the ratio of average accuracy to default accuracy.

The above features were computed both on predictions estimated from the full
data set (training set accuracy and diversity) and on predictions estimated via
tenfold crossvalidation. For Meta-Learning of significant differences, we only
used the latter set because it consistently offered better estimates during the
first task. This also simplified the experimental evaluation. All statistical dif-
ferences for Meta-Learning were computed via a t-Test with α=99%, based on
the accuracies generated by ten-times ten-fold crossvalidation.

4.3 Estimating Stacking’s Accuracy

This section is concerned with predicting the accuracy of Stacking. In order to
obtain a reasonable estimate, a ten-fold CV was used for accuracy estimation.
We first investigated the simplest models possible: based on only a single feature.
Thus, we assumed linear relationships between each feature and the accuracy
of our stacked classifier and characterized this relation by statistical correlation
coefficients and mean absolute errors (MAE). Afterwards, we considered more
complex and non-linear models obtained by various regression algorithms from
machine learning.

4A value of 1.0 stands for identical predictions between two learners while a value of 0.0
represents random correlations. A negative value signifies systematic disagreement between
classifiers.

31

Table 4.1: This table shows the correlations and mean absolute errors (MAE) for
dataset-related features vs. the accuracy. The first column shows the correlation
for the full meta dataset (26 examples), the second column shows the correlation
estimated by leave-one-out crossvalidation. Best features are shown in bold.

Dataset All CV

Features Corr MAE Corr MAE
Inst 0.26 0.084 0.03 0.090
logInst 0.11 0.087 -0.40 0.095
Classes 0.37 0.089 -0.09 0.100
NumAttrs 0.07 0.087 -0.58 0.094
PropNomAttr 0.29 0.087 -0.04 0.095
PropContAttr 0.29 0.087 -0.04 0.095
PropBinAttr 0.20 0.088 -0.30 0.098
ClassEntropy 0.16 0.089 -0.54 0.100
AttrEntropy 0.26 0.085 -0.05 0.094
MutualEntropy 0.49 0.072 0.42 0.077

EquivAttrs 0.58 0.068 0.40 0.079
RelEquivAttrs 0.43 0.075 0.26 0.082
S/N 0.23 0.083 0.00 0.088
MeanAbsCorr 0.08 0.087 -0.47 0.093
MeanAbsSkew 0.06 0.087 -0.45 0.093
MeanAbsKurtosis 0.06 0.088 -0.37 0.095
defAcc 0.01 0.087 -0.94 0.095

32

Table 4.2: This table shows the correlation and mean absolute errors (MAE) on
base classifier related features vs. the accuracy. For the first two columns, all
features are based on training set performance of the base classifiers. For the
last two columns, a ten-fold crossvalidation was used to determine better but
more costly estimates of base classifier performance. The first and third column
show the correlations and MAE on the full meta dataset, the second and fourth
column show correlations and MAE estimated via leave-one-out crossvalidation.

Classifier AllT CVT All CV

Features Corr MAE Corr MAE Corr MAE Corr MAE

DT 0.77 0.055 0.67 0.062 0.83 0.046 0.79 0.051
IBk − K1 0.72 0.072 0.69 0.076 0.95 0.030 0.94 0.032
J48 0.79 0.055 0.73 0.061 0.84 0.042 0.81 0.046
KD 0.69 0.076 0.53 0.086 0.95 0.029 0.94 0.031
KStar 0.59 0.084 -0.21 0.102 0.93 0.037 0.92 0.040
MLR 0.50 0.072 0.07 0.084 0.32 0.083 -0.11 0.097
NB − K 0.81 0.050 0.73 0.056 0.77 0.052 0.68 0.059
MinAcc 0.58 0.069 0.27 0.080 0.40 0.078 0.00 0.091
MaxAcc 0.71 0.072 0.68 0.088 0.96 0.021 0.96 0.022

MeanAcc 0.84 0.045 0.81 0.049 0.92 0.033 0.91 0.036
StDevAcc 0.58 0.065 0.36 0.074 0.26 0.083 0.05 0.088
SkewAcc 0.46 0.073 0.31 0.079 0.32 0.083 0.02 0.091
SkewAcc2 0.35 0.081 0.16 0.087 0.20 0.083 -0.10 0.089
KurtAcc 0.39 0.077 0.22 0.083 0.29 0.083 0.12 0.088
relRangeAcc 0.40 0.075 0.26 0.080 0.20 0.090 -0.20 0.097
MinK 0.56 0.065 0.46 0.069 0.40 0.075 0.23 0.081
MaxK 0.00 0.087 -0.19 0.096 0.18 0.085 -0.14 0.091
MeanK 0.70 0.059 0.61 0.064 0.64 0.060 0.57 0.065
StDevK 0.48 0.063 0.36 0.068 0.15 0.086 -0.20 0.100
SkewK 0.58 0.071 0.43 0.078 0.66 0.064 0.58 0.070
SkewK2 0.61 0.082 0.32 0.094 0.57 0.075 0.42 0.083
KurtK 0.52 0.088 0.09 0.100 0.59 0.070 0.47 0.077
relRangeK 0.08 0.090 -0.81 0.099 0.35 0.076 0.21 0.081
relMeanAcc 0.28 0.082 0.08 0.087 0.38 0.078 0.27 0.082

33

4.3.1 Linear Models based on Single Features

We computed statistical correlation coefficients and mean absolute errors (MAE)
for all our features, always versus the accuracy of Stacking. The dataset-related
features can be found in Table 4.1, and the base-classifier-related features in Ta-
ble 4.2. Correlations and MAEs were determined for all meta data (All) and also
via leave-one-out crossvalidation (CV). In the former, this estimate was based
on the output of one linear regression model computed from all meta-examples5

In the latter case, this estimate was based on the output of twenty-six linear
models which were trained using all but one meta-example and tested on the
remaining meta-example. The latter case is a more reliable indicator of model
performance on unseen data than the former.

In the case of base classifier related features, we have an additional dimen-
sion: we can estimate the base classifier accuracies on the full dataset (AllT,

CV T, i.e. training set accuracies) or via tenfold crossvalidation (All, CV),
yielding two different set of features. Since Stacking uses CV internally, we ex-
pect All and CV to be better predictors for stacked accuracy. This is indeed
the case – a single feature, MaxAcc, already yields excellent results. However,
computing a crossvalidation on the original dataset comes with a non-negligible
computational cost. A computational cost reduction by an order of magnitude
could be obtained by using training set output to compute our features – which
motivates AllT and CV T. As expected, in this case we get less good but still
acceptable results for best single feature, MeanAcc.

As should be expected from a high-bias linear model, all base classifier re-
lated features show a graceful degradation from All to CV. We were surprised
to note that this is not always true for the dataset-related features - about half
of the features have a negative correlation for CV whose absolute value is higher
than the positive correlation for All. This higher negative correlation can un-
fortunately not be used to predict stacked accuracy6 and is always coupled to a
large MAE. It seems that a lot of the dataset-related features are not relevant
to this task or that a one-dimensional linear model is not appropriate to find a
relevant relation.

4.3.2 Models based on multiple features

In order to test how we may improve our results by using multiple features,
we resorted to using standard machine-learning approaches for regression on
our meta dataset. We created one meta dataset with accuracy estimation via
training set (MetaTrain) and one estimated via tenfold CV (MetaCV). The
dataset-related features were included in both cases. We evaluated linear re-
gression, LWR (locally weighted regression), model trees7, regression trees, KStar

and IBk instance based learners at the meta-level. Linear regression and model

5Each meta-example consist of features computed from one original dataset, either directly
or indirectly, followed by the accuracy of the stacked classifier.

6The maximum negative correlation appears in feature defAcc (-0.94; CV) This correlation
is based on twenty-six different models, one per leave-one-out training fold. All data would
have to be used to determine the final regression line, but then this result can no longer be
validated and seems certainly too optimistic. This is also indicated by the high MAE – about
4x as high as for MaxAcc.

7M5Prime from WEKA, see (Wang & Witten, 1997)

34

trees proved superior8. However, we were still unable to find any model which
performed better than the best linear model based on a single feature9.

Additionally, we considered using principal components analysis for feature
transformation. Since using all available data for PCA gives indirect feedback
about feature distribution to the learning system10 it is necessary to compute
the PCA transformation on training data only. In preliminary investigations,
we found that for our small meta dataset the PCA projection changes quite
drastically from one leave-one-out fold to the next and thus seems too unstable.
More meta data would be necessary to apply this technique appropriately.

Concluding, features derived from classifiers seem to be more relevant in the
context of predicting accuracy than those derived directly from the datasets,
which was also found in (Bensusan & Kalousis, 2001). However, in our case
linear models based on single features were sufficient to achieve best results.
For example, the following regression line predicts Stacking’s accuracy with a
correlation of 0.96 and a MAE of 0.022:

StAcc = 1.074 ∗ MaxAcc − 0.082

Notice that although it seems at first glance that Stacking performs slightly worse
than the best component classifier, this view is biased: MaxAcc, i.e. the best
base classifier by hindsight, is a less fair comparison than accuracy of X-Val since
its decision is based on all available data while X-Val and Stacking only see the
training data from the leave-one-out CV, i.e. all but one meta-instance. Notice
also that although computing MaxAcc leaves us with a lot of data which could
be used directly by Stacking, this would only enable us to compute the training
set accuracy for Stacking and not the ten-fold cv estimate we used here.

Given our results, it is surprising that other Meta-Learning approaches have
not considered that quite simple models may suffice, but instead rely on complex
models whose interpretation may be quite difficult.

4.4 Meta-Learning of Significant Differences

This section is concerned with predicting significant differences between Stacking

and three other ensemble learning schemes. For each of Stacking vs. Voting,
Stacking vs. Grading and Stacking vs. X-Val, we generated a separate meta dataset
consisting of all dataset-related and classifier-related features11 followed by a
binary class variable, being 1 if Stacking is significantly better than the other
scheme and 0 otherwise. In case of no significant difference, we removed the
respective example from the meta dataset, under the premise that in this case

8Both were always top two by highest correlation and lowest MAE with the rest of the
field – usually far – behind.

9We also evaluated a wrapper-based feature subset selection which systematically optimizes
the performance of a learning algorithm by removing features, using the algorithm as its own
model. For MetaTrain we were thus able to improve its performance – however, given the
small size of the meta dataset we feel that these results may be strongly biased by overfitting.

10We found that using all data for the PCA does not enable us to predict Stacking’s accuracy
better, but it does allow us to solve all three learning problems from the next section equally
well, each via a single threshold on the largest principal component – clearly too good to be
true.

11Because of the much better results in predicting Stacking’s accuracy and also to simplify
our experiments, we only considered those classifier features estimated via crossvalidation.

35

−1.5 −1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Figure 4.1: This figure shows a projection of the Stacking vs. Voting meta dataset
onto two dimensions, via principal component analysis (53.1% of variance ex-
plained). ∗ stands for class=1 (where Stacking is better) and ◦ for class=0. Those
datasets which were no part of the meta dataset (no significant differences be-
tween Stacking and Voting) are also shown, as ×.

we can consider both variants to be equivalent and thus judge either answer to
be correct.

On these meta datasets, we evaluated a number of standard machine learn-
ing algorithms available in WEKA12 via leave-one-out crossvalidation. We only
discuss the best models which in most cases seem to be rather simple and based
on single attributes only, hinting that they may be robust. Smaller values for
crossvalidation (e.g. seven-fold, six-fold) were evaluated as additional measure
for model robustness. In one case, we were even able to give a tentative inter-
pretation of the model.

4.4.1 Stacking vs. Voting

For Stacking vs. Voting, there are twelve datasets without significant differences.
After removing them from our meta dataset, we have fourteen instances, seven
with class=1, seven with class=0. The baseline accuracy is thus 50%. Here,
IBk is the best meta-learner with an accuracy of 92.86% and a single error for
vote. A crossvalidation using only seven folds produces the exact same result.
Figure 4.1 shows a projection via PCA of our meta dataset into two dimensions.
The single ∗ in the ◦ territory (near X=0.5,Y=2) corresponds to the single error,
dataset vote.

When removing the base classifier dependent features, IBk is still the best
classifier with an additional error on labor, the smallest dataset. In this case

12All base learners plus 1R and DecisionStump

36

MLR, another high-bias and global learner, is equally good. So we may tenta-
tively conclude that for this meta dataset, there seems to be no single feature
which can predict the significant differences as well as a combination of all fea-
tures.

4.4.2 Stacking vs. Grading

For Stacking vs. Grading, there are again twelve datasets on which there are
no significant differences. After removing them from our meta dataset, we have
fourteen instances whose classes are again equally distributed. Thus the baseline
accuracy is also 50%. Here, J48 is the best choice with 92.86% accuracy and
only a single error on the smallest dataset, labor. The training set model is
based on a single attribute, propNomAttr. In all fourteen folds but two there is
the same model, which also appears as the training set model.

propNomAttr <= 0.684211 : class = 1
otherwise : class = 0

In the two other folds, the same attribute appears in the same formula with
0.65 and 0.695652 resp. as value on the right side. It seems that the proportion
of nominal attributes plays a role on the performance between Stacking and
Grading: in case there about 2

3 or less of the attributes are nominal, Stacking

works significantly better than Grading.
A tentative explanation for this model may be that a smaller proportion of

nominal attributes makes learning harder for the base-learners, since most of
them are better equipped to handle nominal data. Stacking seems to be able to
compensate for this, since its meta-level data is independent of the base-level
data13 and is processed by MLR which is well equipped to handle numeric data.
However, Grading seems to be unable to compensate for this since its meta-level
data contains just the base-level attributes. Thus its meta learner IBk can be
expected to be susceptible to a smaller proportion of nominal attributes in the
same way as the base learners.

4.4.3 Stacking vs. XVal

For Stacking vs. X-Val, seventeen examples offer no significant differences. Only
nine examples remain for our experiments, the baseline accuracy is already
66.7%. Interestingly in this case the best model is from DecisionStump which
learns a single J48 node, obtaining 88.9% accuracy, corresponding to a single
error on dataset balance-scale. It seems J48 is prone to overfitting on this meta
dataset. The training set model is based on meanAbsSkew. All but two times,
the following model appears:

meanAbsSkew <= 0.31 : class = 0
meanAbsSkew > 0.31 : class = 1
meanAbsSkew missing : class = 0

Once the same model appears with value 0.53 instead of 0.31. Once a model
based on numClasses <= 13 : class = 1 appears. The same overall accuracy

13The meta-level data for Stacking consists of class probability distributions from all base
learners.

37

is also obtained in a six-fold crossvalidation. Still, this is probably those of our
models which is least trustworthy.

4.5 Related Research

Up to now there is no research aiming to either predict the accuracy of ensemble
learning schemes or to predict which ensemble learning scheme to use for a given
dataset. Here we have investigated both tasks and found them to work quite
well. We give some representative examples.

Using regression to predict the performance of basic learning algorithms
was first investigated in (Gama & Brazdil, 1995), continuing the framework of
StatLOG(Brazdil, Gama & Henry, 1994). They report poor results in terms of
normalized mean squared error.

(Brazdil, Gama & Henry, 1994) have investigated meta-level learning to pre-
dict the best classifier for a given dataset. They use a confidence interval around
the best accuracy to define applicable 14 and inapplicable classifiers for each
dataset. Our approach uses the statistical t-Test instead. While their approach
has to integrate possibly conflicting rules concerning applicability, making the
evaluation quite complex, our approach can predict significant differences di-
rectly. Furthermore, the focus on using only decision trees and derived rules
may have lead to inferior results as we had to use a variety of machine learning
techniques to get best results. They also considered only one-against-all com-
parisons between candidate classifiers instead of the pairwise comparisons which
we investigated.

(Pfahringer et al., 2000) investigated Meta-Learning using landmarkers, which
are fast and simple learning algorithms used to characterize the dataset. The
features which we derived from base classifiers can be considered similar. They
report improved results by landmarking which we also observed for predicting
the accuracy of Stacking. However, for predicting significant differences we found
dataset-related features to be more appropriate. They report work on remov-
ing those examples from the meta dataset where no significant differences were
found and show that in some cases this can hurt Meta-Learning performance.

(Bensusan & Kalousis, 2001) have recently investigated Meta-Learning in a
similar setting, using features extended from STATLOG, histograms of numeric
attributes and landmarking using seven learners, four of which are also used by
us as base classifiers. They considered three meta-learners. They found that
landmarking is superior to predict errors of classifiers which was confirmed in our
experiments. However, they found that landmarking is not useful to generate
good rankings for classifiers – no meta-learner is able to perform better than a
default strategy. Our results indicate that for predicting significant differences,
landmarking features are also less useful. Mean absolute errors are given, but
no statistical correlation measure can be found for the regression experiments.
Some regression rules from Cubist are shown and interpreted, even though they
state that ranking determine from Cubist’s error prediction always perform
worse than the default.

14within confidence interval ≡ applicable

38

4.6 Conclusion

In this chapter we have investigated the use of machine learning techniques in
the context of Meta-Learning both to predict stacked classifier accuracy and sig-
nificant differences between Stacking and three other ensemble learning schemes.
We used both dataset-related and base classifier related features in our tasks.

In the context of predicting classifier accuracy, we found that classifier-
related features, namely some of those derived from accuracy, are excellently
suited to this task, as have others e.g. (Bensusan & Kalousis, 2001; Pfahringer
et al., 2000). A single feature, the accuracy of the best component classifier
in the ensemble, is able to predict the accuracy of the stacked classifier quite
well. Other Meta-Learning approaches seem not to take into account that such
simple models may be competitive to more complex models.

In the second part we investigated the prediction of significant differences
between Stacking and other ensemble learning schemes. In this case we found
that features derived directly from the dataset were usually better suited. For
the model which predicts significant differences between Grading and Stacking,
insight into the inner workings of both schemes have enabled us to formulate a
tentative explanation of the learned model.

Our Meta-Learning experiments were constructed on the premise to predict
significant differences only where they appear. While removal of ties from the
meta dataset was previously mentioned in work by (Brazdil, Gama & Henry,
1994), using a less ad-hoc and more appropriate statistical test to determine
those ties seems to have been overlooked previously.

At last we have found that there is no single best meta classifier for pre-
dicting significant differences – a variety of machine learning algorithms had to
be evaluated for best results. Although most of our best models were based
on single features, it seems that no single learning algorithm is able to find all
of them. This hints that learning problems which aim to distinguish between
pairs of classifiers may have quite different properties, which could explain why
meta-learning a single model for many classifiers at once is so hard.

Given that our meta-dataset is very small – only twenty-six examples –
and shrinks even further when removing non-significant entries, all our results
may be strongly biased by overfitting. Independent verification of our learned
models in new domains is still necessary before the models can be taken seriously.
However, we believe that our results on Stacking’s accuracy will prove to remain
valid, while we are far more sceptical of our models which predict significant
differences.

39

Chapter 5

Improving upon Stacking:

Stacking with Confidences

We investigated performance differences between multi-class and two-class datasets
for ensemble learning schemes. We were surprised to find that Stacking, the most
general such scheme, performs worse on multi-class datasets when using class
probability distributions as meta-level data. In this chapter we will present re-
sults concerning this heretofore unknown weakness of Stacking. In addition we
will present a new variant of Stacking, using meta-learner MLR, which is able
to compensate for this weakness, improving Stacking significantly on almost half
of our multi-class datasets. Two other related meta-learners could also be im-
proved using the same idea. The dimensionality of the meta data set is reduced
by a factor equal to the number of classes, which leads to faster learning. In
comparison to other ensemble learning methods this improves Stacking’s lead
further, making it the most successful system by a variety of measures. This
chapter is an extended version of (Seewald, 2002a).

5.1 Introduction

We have investigated the performance of four related ensemble learning schemes,
including the mentioned Stacking variant, relative to multi-class vs. two-class
datasets, in a ranking. We found no significant differences for Grading and Voting1

– however, the mentioned Stacking variant showed a significant performance
degradation for multi-class datasets. This performance degradation is also quite
apparent by other accuracy-based measures. We will present these results and
a variant of stacking which does not show this performance degradation.

First, we will present the basic concept behind Stacking and show how it can
be extended towards StackingC for the meta-learner MLR. Then we will describe
the experimental setup, base classifiers and ensemble learning schemes used
and investigate empirically the claims that Stacking performs worse on multi-
class datasets. Afterwards we will compare StackingC to Stacking in more detail,
considering significant differences by dataset, influence of number of classes and
shortly investigate the claim of faster learning for StackingC. At last we will

1X-Val seems to be worse on two-class datasets.

40

Attrs Cl.

AttrV ec1 a

AttrV ec2 b

AttrV ec3 b

AttrV ec4 c
...

...
AttrV ecn a

(a) original training set

Classifieri

a b c

Pi,a1 = 0.90 Pi,b1 = 0.05 Pi,c1 = 0.05
Pi,a2 = 0.15 Pi,b2 = 0.70 Pi,c2 = 0.15
Pi,a3 = 0.10 Pi,b3 = 0.80 Pi,c3 = 0.10
Pi,a4 = 0.20 Pi,b4 = 0.20 Pi,c4 = 0.60

...
...

...
Pi,an = 0.80 Pi,bn = 0.10 Pi,cn = 0.10

(b) sample class probability distribution

Classifier1 Classifier2 ClassifierN class

a b c a b c a b c = a?

P1,a1 P1,b1 P1,c1 P2,a1 P2,b1 P2,c1 . . . PN,a1 PN,b1 PN,c1 1
P1,a2 P1,b2 P1,c2 P2,a2 P2,b2 P2,c2 . . . PN,a2 PN,b2 PN,c2 0
P1,a3 P1,b3 P1,c3 P2,a3 P2,b3 P2,c3 . . . PN,a3 PN,b3 PN,c3 0
P1,a4 P1,b4 P1,c4 P2,a4 P2,b4 P2,c4 . . . PN,a4 PN,b4 PN,c4 0

...
...

...
...

P1,an P1,bn P1,cn P2,an P2,bn P2,cn . . . PN,an PN,bn PN,cn 1

(c) meta training set for class a, Stacking with MLR

Classifier1 Classifier2 ClassifierN class

a a a = a?

P1,a1 P2,a1 . . . PN,a1 1
P1,a2 P2,a2 . . . PN,a2 0
P1,a3 P2,a3 . . . PN,a3 0
P1,a4 P2,a4 . . . PN,a4 0

...
...

...
...

P1,an P2,an . . . PN,an 1

(d) meta training set for class a, StackingC with MLR

Figure 5.1: Illustration of Stacking and StackingC on a dataset with three classes
(a, b and c), n examples and N base classifiers. Pi,jk refers to the probability
given by base classifier i for class j on example number k

discuss results about applying the same basic idea to other meta classifiers and
point towards interesting research directions for the future.

5.2 StackingC

The main idea behind Stacking is using the output from a set of level-0 (=base)
classifiers, estimated via crossvalidation, to learn a level-1 (=meta) classifier
which gives the final prediction.

As Ting & Witten (1999) propose, we use Stacking with multi-response linear
regression (MLR) as level-1 classifier. Basically, MLR learns a linear regression
function for each class which predicts degree of confidence in class membership
and can, after normalization, be interpreted as class probability. Other level-1

41

classifiers do not usually learn a distinct model for each class, but instead learn
a single model for all classes at once, e.g. a decision tree.

During prediction, the base classifiers are queried for their class probability
distributions which are then used as input for the regression models (one for
each class). The output of the linear models is renormalized to yield a proper
class probability distribution.

Figure 5.1 shows an example with three classes (a, b and c), n examples and
N base classifiers. 1(a) shows the original training set with its attribute vectors
and class values.

Figure 5.1(b) shows how a class probability distribution of one sensible clas-
sifier may look like. The maximum probabilities are shown in italics and denote
the classes which would be predicted for each example. There is one such set of
class probability distributions for each base classifier.

Figure 5.1(c) shows the meta training set for Stacking which is used to learn
a linear regression function to predict the probability of class == a. We denote
Pi,jk to signify the probability given by base classifier i for class j on example
number k. The classes are mapped to an indicator variable such that only class
a is mapped to 1 and all other classes to 0. In our example there are of course
two other such training sets for class b and c which differ only in the last column
and are thus not shown.

The proposed variant, StackingC, differs in these points: for each linear model
associated with a specific class, only the partial class probability distribution
which deals with this very class is used during training and testing. While
Stacking uses probabilities for all classes and from all component classifiers for
each linear model, StackingC uses only the class probabilities associated with the
class which we want our linear model to predict.2

Figure 5.1(d) shows the corresponding meta training set for StackingC which
consists only of those columns from the original meta training set which are
concerned with class=a; i.e. Pi,ak for all i and k. While the meta training sets
for Stacking’s meta classifier differ only in the last attribute (the class indicator
variable), those for StackingC have fewer attributes by a factor equal to the
number of classes and also have no common attributes. Out of necessity, this
leads to more diverse linear models which we believe to be one mechanism why it
outperforms Stacking. Another one may simply be that with fewer attributes, the
learning problem becomes easier to solve, as long as only irrelevant information
is removed.

As can be easily seen, this modification should not change the performance
for two-class datasets significantly. Since the sum of each class probability dis-
tribution has to be one, the probability of one class is one minus the probability
of the other class, so one of these values is sufficient to encode the complete
information3 Thus we would expect two-class datasets to offer equally good
performance under this modification, but train slightly faster4 because of the
inherent dimensionality reduction for meta data.

2We also switched off the internal feature subset selection in MLR since that seemed to
slightly improve performance – possibly because all features from the focussed meta-level
data are already relevant.

3A linear model is free to use either the one attribute with a positive weight or the other
with a negative weight, using appropriate constant terms.

4The training costs for the base classifiers are of course unchanged.

42

5.3 Experimental Setup

We implemented StackingC in Java within the Waikato Environment for Knowl-
edge Analysis (WEKA5). All other algorithms at the base and meta-level were
already available within WEKA.

For an empirical evaluation we chose twenty-six datasets from the UCI Ma-
chine Learning Repository (Blake & Merz, 1998), shown in Table 3.2. These
datasets include fourteen multi-class and twelve two-class problems. Reported
accuracy estimates are the average of ten ten-fold stratified cross validations
unless otherwise noted. Significant differences were evaluated by a t-test with
significance level of 99%.6

We chose four ensemble learning schemes, including Stacking.

• Grading is the implementation of the grading algorithm evaluated in (See-
wald & Fürnkranz, 2001). It uses the instance-based classifier IBk with
ten nearest neighbors as meta-level classifier.

• X-Val chooses the best base classifier on each fold by an internal ten-fold
CV on the training data. This is just Selection by Crossvalidation which
we mentioned in the beginning.

• Voting is a straight-forward adaptation of voting for distribution classifiers.
Instead of giving its entire vote to the class it considers to be most likely,
each classifier is allowed to split its vote according to the base classifier’s
estimate of the class probability distribution for the example. It is mainly
included as a benchmark of the performance that could be obtained with-
out resorting to the expensive CV of every other algorithm.

• Stacking is the stacking algorithm as implemented in WEKA, which fol-
lows (Ting & Witten, 1999). It constructs the meta dataset by adding
entire class probability distributions instead of only the most likely class.
Following (Ting & Witten, 1999), we also used MLR as the level 1 learner.

All ensemble learning schemes used the following six base learners, which were
chosen to cover a variety of different biases.

• DecisionTable: a decision table learner.

• J48: a Java port of C4.5 Release 8 (Quinlan, 1993a)

• NaiveBayes: the Naive Bayes classifier using multiple kernel density esti-
mation for continuous attributes.

• KernelDensity: a simple kernel density classifier.

• MLR: a multi-class learner which tries to separate each class from all other
classes by linear regression (multi-response linear regression)

• KStar: the K* instance-based learner (Cleary & Trigg, 1995)

5The Java source code of WEKA has been made available at www.cs.waikato.ac.nz
6The used t-test has been shown to have a high type I error e.g. in (Dietterich, 1998).

Although we obtained similar results using a single ten-fold crossvalidation and χ2 test after
McNemar – which should have a low type I error according to the same paper – our reported
significant differences may still be too optimistic.

43

Table 5.1: This table shows the performance of Stacking with different meta-
learners by four measures which are described in the text. Performance on
multi-class and two-class datasets is shown separately, in two adjacent columns.
All data is based on a single ten-fold crossvalidation.

DecisionTable J48 KernelDensity

2Cl mulCl 2Cl mulCl 2Cl mulCl

Avg.acc. 0.842 0.709 0.839 0.827 0.815 0.828
by Accbest 0.974 0.798 0.971 0.958 0.939 0.960
by AccXV al 0.988 0.809 0.985 0.971 0.953 0.973
by AccV oting 0.987 0.810 0.983 0.972 0.951 0.974

KStar MLR NaiveBayes

2Cl mulCl 2Cl mulCl 2Cl mulCl

Avg.acc. 0.816 0.810 0.856 0.826 0.852 0.825
by Accbest 0.943 0.937 0.990 0.963 0.987 0.950
by AccXV al 0.956 0.949 1.005 0.976 1.001 0.963
by AccV oting 0.955 0.950 1.003 0.977 0.999 0.964

All algorithms are implemented in WEKA Release 3.1.8. Each of them returns
a class probability distribution, i.e., they do not predict a single class, but give
probability estimates for each possible class. Parameters for learning schemes
which have not been mentioned were left at their default values.

5.4 Multi-class vs. two-class datasets

In this section, we present results concerning the inferior performance of Stacking

with MLR on multi-class datasets and show that all but one meta-learner also
suffer from the same weakness.

This weakness is apparent by a variety of measures. By average accuracy7,
Stacking with MLR performs slightly worse on multi-class datasets. However,
since average accuracy is not a reliable measure because of the different baselines
involved, we investigated three different ways of normalizating the accuracy
(

AccStacking

Accbest

8,
AccStacking

AccXV al
,

AccStacking

AccV oting

9) and computed the geometric mean10 of

these accuracy ratios, both for two-class and multi-class datasets separately.
Detailed results can be found in Table 5.1, column MLR. All these measures
agree that Stacking performs about 3% worse on multi-class datasets. A ranking
of all ensemble learning schemes based on significant differences also shows this
weakness, see Table 5.4. While the latter may be too optimistic due to the
used t-test having a high type-I error, the overall agreement of these different
measures seems to make this weakness quite obvious.

When using all available base learners also as meta-learners for Stacking, i.e.
running six experiments which use the same set of base learners but different

7See Table 5.2 and Table 5.1.
8Accbest = accuracy of best base classifier by hindsight according to X-Val, i.e. estimated

on the complete dataset.
9X-Val and Voting are the accuracies of resp. ensemble learning schemes

10For ratio values, the geometric mean is more appropriate.

44

meta-learners, we found that in all but one case11, again for average accuracy
and all three normalization methods, the performance on multi-class datasets
was worse than on two-class datasets. So we conclude that this may be a general
weakness for Stacking with probability distributions as meta-level data, i.e. of
the extension proposed by Ting & Witten (1999).

There are three reasonable explanations: Firstly, since the number of classes
is proportional to the number of features in the meta-level dataset, a higher
number of classes makes learning harder simply because there are more fea-
tures which have to be considered – i.e. the curse of dimensionality. Secondly,
since Stacking with MLR as meta-learner uses almost the same meta-level data
to train each linear model (i.e. only the class indicator feature is different), a
higher number of classes may decrease the diversity among those linear mod-
els. Thirdly, the base classifiers themselves may be susceptible to the curse of
dimensionality and pass this susceptibility on to Stacking.

The previous result which hints at a general weakness for Stacking with proba-
bility distributions supports the first explanation and discounts the second, since
e.g. J48 does not learn one model per class but one model for all classes at once
and thus decreased diversity of class models cannot be used as explanationn.

If the first explanation is therefore correct, Stacking with predictions as base
data should not suffer from this weakness. Accordingly, our experiments show
that, when normalizing with AccV oting , there are three meta-learners which
perform better on multi-class datasets and three meta-learners which perform
better on two-class datasets – as would be expected by chance. The observed
differences in performance are at most 1%. Average accuracy does not agree
with this conclusion, but it is an unreliable indicator at best.

When we normalize with AccXV al or Accbest, we also get similar conflicting
results. However, according to our ranking (see Table 5.4), X-Val performs
worse on two-class datasets while Voting offers more balanced results. Thus,
when using AccXV al or related measure Accbest for normalization, this leads to
an systematic overestimation of the performance on two-class datasets and thus
to a relative underestimation of the performance on multi-class datasets.

So we still conclude that Stacking with predictions does not seem to suffer
from the mentioned weakness. This also discounts the third explanation. Thus,
even though the base classifiers may still perform worse on multi-class problems,
Stacking with predictions seems to be able to compensate for this bias – as is
StackingC which we will see shortly.

5.5 StackingC versus Stacking

In this section we will compare StackingC and Stacking in detail, focussing on per-
formance and runtime differences. Table 5.2 shows detailed accuracies, standard
deviations and significant differences on all datasets and also average accuracy
on two-class and multi-class datasets respectively. The last measure has to be
interpreted carefully, since it combines problems with different baselines. Also,
the ratio between runtimes12 is given.

11When using KernelDensity as meta-learner, the performance on multi-class datasets is indeed
better. However, all measures also agree that Stacking with KernelDensity performs worse than
with MLR.

12This ratio has to be interpreted carefully, since the experiments were run on a heterogenous
cluster of linux and sun machines with a dynamic mapping of tasks to machines. However,

45

Table 5.2: This table shows accuracies ± standard deviations of Stacking and
StackingC. RRT shows St

StC
Runtime, i.e. the runtime ratio, greater than one

where StackingC is faster. Diff shows + and - for significant wins resp. losses of
StackingC to Stacking and is empty in case of no significant differences.

DS Cl. RRT StackingC Stacking Diff
aud 24 2.86 82.17% 76.02% +
aut 7 2.00 84.20% 82.20% +
b-s 3 1.00 90.22% 89.50% +
b-c 2 1.97 72.13% 72.06%
b-w 2 1.08 97.38% 97.41%
col 2 2.21 84.70% 84.78%
c-a 2 2.30 86.22% 86.09%
c-g 2 1.65 76.24% 76.17%
dia 2 1.15 76.48% 76.32%
gla 7 1.67 77.20% 76.45%
h-c 5 1.25 84.09% 84.26%
h-h 5 1.27 85.10% 85.14%
h-s 2 1.67 84.30% 84.04%
hep 2 1.13 82.97% 83.29%
ion 2 1.23 92.82% 92.82%
iri 3 0.90 95.40% 94.93%
lab 2 1.08 90.88% 91.58%
lym 4 1.19 81.82% 80.20% +
p-t 22 17.73 47.23% 42.63% +
seg 7 2.00 98.10% 98.08%
son 2 1.88 85.63% 85.58%
soy 19 2.80 93.47% 92.90%
veh 4 1.72 79.36% 79.89%
vot 2 1.81 96.34% 96.32%
vow 11 2.64 99.07% 99.00%
zoo 7 2.37 96.24% 93.96% +
Avg(2Cl) 2 1.60 85.51% 85.54%
Avg(mCl) 9.14 2.96 85.26% 83.94% 6+

Table 5.3: This table shows the improvement of StackingC over Stacking as
AccStackingC

AccStacking
for meta-learners MLR, LWR and M5Prime. All data here is based on a

single ten-fold crossvalidation.

Meta-learner multi-class two-class
MLR 1.0375 0.9983
LWR 1.0256 0.9997
M5Prime 1.0070 1.0000

46

0 5 10 15 20 25
0.95

1

1.05

1.1

1.15

numClasses

A
cc

S
tC

 /
A

cc
S

t

Improvement of StackingC over Stacking

Figure 5.2: This figure shows the improvement of StackingC over Stacking as
AccStackingC

AccStacking
as a function of the number of classes. The solid line shows the

obtained least squares fit for a one-dimensional linear model while the dotted
line indicates a ratio of 1.0. Above the latter line, StackingC is better than Stacking

and vice versa.

Summarizing the table, StackingC wins six times against Stacking, always on
multi-class datasets, and never loses. In all but one case, StackingC is faster –
on average it is 2.3 times faster. StackingC also improves on accuracy by an
average of 3.75% for multi-class datasets; the performance difference for two-
class datasets is negligible, see Table 5.3.

We would also expect StackingC to improve on Stacking more, if the number
of classes is increased. This is usually the case, see Figure 5.2. The statistical
correlation coefficient for the shown relation is 0.8. Our figure also shows the
fitted regression line which has a mean squared error of 2.59E-04.

Concluding, StackingC improves on Stacking in terms of significant accuracy
differences, accuracy ratios and runtime. These improvements are more evident
for multi-class datasets and have some tendency to become more pronounced as
the number of classes increases. StackingC also resolves the weakness of Stack-

ing in the extension proposed by Ting & Witten (1999) and offers balanced
performance on two-class and multi-class datasets.

5.6 Discussion

To find out whether or not our approach is also able to improve other meta-
learners besides MLR, we conducted additional experiments.

Essentially, we tried two different approaches. One was to use two other
regression learners instead of MLR to approximate the class membership func-

since all tasks were run ten times, each time on a different machine, we still consider these to
be rough but useful estimates.

47

Table 5.4: This table shows a ranking of all ensemble learning schemes with
Stacking and StackingC. We are mostly concerned with the differences between
Stacking and StackingC on multi-class datasets. Separate rankings are given on
multi-class and two-class datasets. Ranks are given as Wins/Losses with the
wins counting for the algorithm in the row (Scheme).

Scheme X-Val Grading Stacking StackingC Voting

X-Val on multi-class ds. 0/0 3/3 3/3 2/6 5/5
Grading on multi-class ds. 3/3 0/0 5/4 1/5 3/2
Stacking on multi-class ds. 3/3 4/5 0/0 0/6 4/5

StackingC on multi-class ds. 6/2 5/1 6/0 0/0 5/3
Voting on multi-class ds. 5/5 2/3 5/4 3/5 0/0
X-Val on two-class ds. 0/0 2/3 0/3 0/3 2/4

Grading on two-class ds. 3/2 0/0 2/3 2/4 1/0
Stacking on two-class ds. 3/0 3/2 0/0 0/0 3/2

StackingC on two-class ds. 3/0 4/2 0/0 0/0 4/2
Voting on two-class ds. 4/2 0/1 2/3 2/4 0/0

tions for each class separately. This worked quite well, see Table 5.3. MLR is
the meta-learner which we previously used for StackingC, but we used only the
first crossvalidation in order to enable a fair comparison to the other learners.
LWR stands for locally weighted regression13and M5Prime stands for a model tree
learner. Both learners are available within WEKA. In terms of absolute perfor-
mance over all datasets, LWR is slightly better than MLR and M5Prime is slightly
worse.

The second approach, namely modifying common machine learning algo-
rithms14 to use only partial probability distributions during prediction, yielded
catastrophically bad results on some datasets.

These results indicate that the source of StackingC’s improvement may lie
more in the diversity of class models than in the dimensionality reduction,
although both play a key role (see also Section 2, paragraph 8). Using one-
against-all class binarization and regression learners seems to be essential. So
we intend to look into other binarization methods in the future.

Another interesting venue for future research may be to find out why X-Val

performs worse on two-class datasets as our ranking indicates. A tentative ex-
planation may be that the base classifiers perform better on two-class datasets.
Thus, their accuracies are more similar on these datasets, increasing the prob-
ability that X-Val will choose a suboptimal learner by its internal CV. Further
research is needed to find out if this is indeed the case. This may have far-
reaching consequences because of the ubiquitousness of X-Val as a method to
choose the best classifier throughout the machine learning community.

13We used parameter -W 1 for inverse kernels 1

x
14NaiveBayes, KStar, IBk and KernelDensity.

48

5.7 Related Research

Džeroski and Zenko (2002) investigate Stacking in the extension proposed by
Ting & Witten (1999). They introduce a new variant sMM5 which they claim to
be in a league of its own. Their new variant is quite competitive to our variant
StackingC but much slower, according to unpublished experiments on our twenty-
six datasets. However, combining both ideas does not improve performance.

Todorovski & Džeroski (2000) introduce a novel method to combine multiple
models. Instead of directly predicting the final class as all combining schemes
we considered, their meta-learner MDT, based on C4.5, specifies which model
to use for each example based on statistical and information theoretic measures
computed from the class probability distribution. While their approach may
make the combining scheme more comprehensible by learning an explicit deci-
sion tree decision tree, it is unclear whether this leads to better insight as well.
Stacking and StackingC using MLR as meta-learner also allow to determine rela-
tive importance of base learners per class, simply by inspecting the weights of
meta-level attributes after training – this has e.g. been done by Ting & Witten
(1999).

Ting & Witten (1999) deal with the type of generalizer suitable to derive
the higher-level model and the kind of attributes it should use as input. Using
probability distributions as they propose instead of just predictions is essential
to our variant StackingC. They also investigated the usefulness of non-negativity
constraints for feature weights within linear models, but found that it is not
essential to get the best performance. However they found it may be useful
to facilitate human comprehension of these models. Since our focus was on
performance and not on comprehensibility, we did not use a non-negativity
constraint. In the future it may be interesting to look into comparing their
linear models to those found by StackingC to see where they differ.

5.8 Conclusion

We have presented empirical evidence that Stacking in the extension proposed by
(Ting & Witten, 1999) performs worse on multi-class datasets than on two-class
datasets, for all but one meta-learner we investigated.

This can be explained as follows: With a higher number of classes, the
dimensionality of the meta-level data is proportionally increased. This higher
dimensionality makes it harder for meta-learners to find good models, since there
are more features to be considered. Stacking using meta-level data consisting of
predictions does not suffer from this weakness, as would be expected.

In order to improve on the status quo, we have proposed and implemented
a new Stacking variant, named StackingC, based on reducing the dimensionality
of the meta dataset so as to be independent of the number of classes and re-
moving a priori irrelevant features, and shown that it resolves this previously
unreported weakness, for MLR and two other related meta-learners considered.
We believe that the source of this improvement lies partially in the dimension-
ality reduction, but more importantly in the higher diversity of class models.
Using one-against-all class binarization and regression learners for each class
model seems to be essential.

49

Chapter 6

Learning Curves

In this chapter, we investigate the hypothesis that StackingC is the most stable
ensemble learning scheme. We define the stability of a learner as its continued
good performance in the face of a reduction in training data, i.e. its capability
to find the best or a reasonably good model when confronted with less training
data, and – in case of insufficient training data – a graceful degradation in per-
formance. Our definition of stability is thus not directly related to the concept
of high bias which is associated with learners such as MLR whose learned model
is less influenced by small changes in the data. However, high bias may be a
necessary or at least useful condition for a stable learner – provided it is able to
find the correct model in the first place.

Based on the observation that Stacking, especially StackingC, seems able to
improve upon simpler schemes such as Voting, we expected that meta-level learn-
ing in Stacking would also be able to compensate better for the worse estimation
of meta-level data which occurs due to less training data than simpler schemes,
e.g. unweighted voting. As framework to evaluate this hypothesis empirically
we chose learning curves.

6.1 Introduction and Experimental Setup

Learning curves give a good picture of learning algorithms with respect to our
concept of stability. By measuring the performance of our algorithms at different
training set sizes, we are able to observe the reduction in accuracy directly.
The error is computed via hold-out estimate from the same fixed test set. To
increase stability and also to estimate variance for significance tests, the same
procedure was repeated thirty times, with different random ordering. We used
hold-out error estimates since crossvalidation on smaller and smaller training
sets is problematic, because both the training and test sets get smaller, thus
the error estimate rapidly becomes less reliable. By using the same fixed test
set in each run, the error estimate is far more reliable; furthermore, far less
correlation between training data sets exists in that case. Clearly, there is also
an computational advantage, but we do not consider this a significant factor.
At last, it is also interesting to see how StackingC performs when compared via
other methodologies and not the ubiquituous ten-times ten-fold crossvalidated
t-test.

50

The training and test sets for our learning curves were created as follows.

1. The datasets were split into 75% training set and 25% test set via stratified
random sampling.

2. The training sets were successively reduced by factor 1.2 via random sam-
pling, stopping when the training set size was approximately equal to the
test set size. Seven training sets were thus generated for each dataset,
each one 83% the size of the previous one.

3. Each ensemble learning scheme was trained on all the training sets and
tested on the same test set.

For each of our thirty runs, these training and test sets were precomputed,
each time with a different split into training and test set. Over all runs, mean
and standard deviation of test set accuracies was computed. Significant dif-
ferences were considered to be non-overlapping accuracy confidence intervals1

which gives an approximate confidence level of 95%.
For empirical evaluation we chose twenty-six datasets from the UCI Machine

Learning Repository (Blake & Merz, 1998), shown in Table 3.2. These were
used in all other experiments, throughout this thesis. We chose four ensemble
learning schemes, including StackingC, plus bestBase.

• StackingC is the stacking algorithm which was introduced in (Seewald,
2002a) (extended version see Chapter 5), one of the best-performing Stack-

ing variants to date.

• X-Val chooses the best base classifier on each fold by an internal ten-fold
CV on the training data. Thus, for every point on the learning curve and
each run, a different classifier may possibly be chosen.

• Voting is a straight-forward extension of voting for distribution classifiers.
Instead of giving its entire vote to the class it considers to be most likely,
each classifier is allowed to split its vote according to the base classifier’s
estimate of the class probability distribution for the example. It is mainly
included as a benchmark of the performance that could be obtained with-
out resorting to the expensive crossvalidation of all other algorithms.

• Grading is the implementation of the grading algorithm evaluated in (See-
wald & Fürnkranz, 2001). It uses a simple baseline learner as meta-level
classifier which speeds up computation by an order of magnitude while still
retaining its unique performance. See Chapter 7 for a more comprehensive
discussion of this optimization.

• bestBase is the best base classifier by hindsight. For each dataset, only
one best base classifier was chosen, based on the premise that there is one
optimal classifier for each dataset, whose expertise matches the learning
problem best independent of training set size. The best base classifier is
considered the one of the four base learners whose performance, averaged
over all runs, is nearest to the performance that could be achieved by
choosing the maximum performance from all the base learners.

1i.e. the difference between accuracy means is larger than the sum of the standard devia-
tions of both accuracies involved.

51

Table 6.1: This table shows pairwise significant differences between ensemble
learning schemes as wins/losses. Notice that for each entry 182 comparisons
were made so that all but one of these differences are well below the expected
alpha error of 5% and should therefore not be considered significant.

Scheme StackingC X-Val Voting Grading bestBase

StackingC 0/0 5/0 3/0 1/6
X-Val 0/0 4/5 3/3 1/15

Voting 0/5 5/4 0/1 0/8
Grading 0/3 3/3 1/0 0/7

bestBase 6/1 15/1 8/0 7/0

Table 6.2: This table shows pairwise correlation coefficients between ensemble
learning schemes, over the full learning curve.

Scheme StackingC X-Val Voting Grading bestBase

StackingC 1.000 0.994 0.984 0.986 0.982
X-Val 0.994 1.000 0.979 0.983 0.981

Voting 0.984 0.979 1.000 0.997 0.990
Grading 0.986 0.983 0.997 1.000 0.991

bestBase 0.982 0.981 0.990 0.991 1.000

All ensemble learning schemes used the following four base learners, which we
found to be the best-performing diverse set of our seven original learners, see
Chapter 3.

• J48: a Java port of C4.5 Release 8 (Quinlan, 1993a)

• NaiveBayes: the Naive Bayes classifier using multiple kernel density esti-
mation for continuous attributes.

• MLR: a multi-class learner which tries to separate each class from all other
classes by linear regression (multi-response linear regression)

• KStar: the K* instance-based learner (Cleary & Trigg, 1995)

All algorithms are implemented in WEKA Release 3.1.8. Each of them returns
a class probability distribution, i.e., they do not predict a single class, but give
probability estimates for each possible class. Parameters for learning schemes
which have not been mentioned were left at their default values.

6.2 Results and Discussion

The complete learning curves can be found in Figures 6.1 to 6.4. The perfor-
mance of a single ten-fold crossvalidation on the complete dataset is also shown
in each case. For more general results, we also computed significant differences
(Table 6.1) and pairwise correlation coefficients (Table 6.2).

52

Table 6.1 shows the pairwise significant differences between ensemble learn-
ing schemes, including bestBase. Each entry was computed by determining sig-
nificant differences in accuracy over all twenty-six datasets and seven points on
the learning curve, yielding 182 comparisons. Although some significant differ-
ences are found, all but one of them are well below the expected alpha error of
5%, i.e. 9.1. Concerning the single remaining entry 1/15 (bestBase vs. X-Val),
six losses are on a single dataset – if we remove them, we are just a little above
alpha error. Although a plausible explanation exists – i.e. we would expect
X-Val to perform worse in selecting the best base classifier than hindsight, since
its decision is based on less available data – this result seems unreliable and
may be anecdotal. If we look at the learning curves themselves, we find the
reason for this absence of truly significant differences in the consistently high
standard deviations over all datasets, amounts of training data and ensemble
learning schemes. Table 6.2 shows the correlation coefficients between the clas-
sifiers, computed over all points of the learning curves and datasets. Here, we
also note that all the ensemble learning schemes perform quite similarily. So
we must conclude that we found no significant differences between ensemble
learning schemes. Thus, a further investigation into our concept of stability is
meaningless – all schemes are equally stable.

Still, close inspection of the learning curves shows that most schemes do
show a graceful degration when trained on ever smaller and smaller training sets.
However, as mentioned the variance over the runs is quite high, so it would make
sense to combine ensemble learning schemes with a variance-reducing technique
such as bagging or boosting to increase stability.

6.3 Related Research

We are not aware of any other investigations into the stability as defined here,
neither of ensemble learning schemes nor basic classifiers.

6.4 Conclusion

In light of the presented evidence, we cannot support our original hypothe-
sis that StackingC offers more stable performance than other ensemble learning
schemes. On the contrary, we found almost no significant differences between
our ensemble learning schemes, including the best base classifier by hindsight.
Thus by our definition of stability any of the schemes we considered is a viable
choice. It seems that evaluation via hold-out set and evaluation via ten-times
ten-fold crossvalidated t-test – which is widely used in the machine learning
community – give contradicting results. This observation agrees with currently
unpublished results from B. Zenko who found that, when comparing ensemble
learning schemes via a five times two-fold crossvalidated t-test (proposed by
Dietterich (1998)), there are also almost no significant differences to be found.
Dietterich (1998) also shows that a variant of the commonly used ten times
ten-fold crossvalidated t-test has a high alpha error, i.e. is quite likely to find
significant differences where there are none. So it is not inconceivable that these
results hold in general.

53

On a more positive note, we found that even the simplest scheme Voting is
competitive to the best base classifier by hindsight. Crossvalidation via X-Val

is also competitive, but much more costly. Even though it may potentially
choose a different classifier for each point and run of the learning curve, it does
not perform significantly better than bestBase, which in retrospect supports our
decision to choose only one best classifier for each dataset.

As mentioned the variance over the runs from our learning curves is quite
high. Thus it would seem to make sense to combine ensemble learning schemes
with a variance-reducing technique such as bagging or boosting.

On a final note, we believe that stability is a desirable property of classifiers
and may be complementary to classic accuracy estimates. A more quantitative
measure of classifier stability will be our next step.

54

0 1 2 3 4 5 6 7 8 9
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Learncurve for Dataset #1

Training set (8−9=CV, 7=75%, 6=62%,.. 1=25%)

H
ol

d−
ou

t a
cc

ur
ac

y

0 1 2 3 4 5 6 7 8 9
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Learncurve for Dataset #2

Training set (8−9=CV, 7=75%, 6=62%,.. 1=25%)

H
ol

d−
ou

t a
cc

ur
ac

y

Figure 6.1: Learning curves for dataset audiology to autos. StackingC is the
unbroken line with ×, X-Val is the dotted line with ◦, Voting is the dashed line
with 4, Grading is the dash-dotted line with 5 and bestBase is the dotted line
with ∗. The training set at x=1 is 25% and increases geometrically to 75%
at x=7, see text. From 8-9, the crossvalidated accuracy estimate is shown for
comparison. The schemes are shifted to the right from each point, in the given
order, so that the confidence intervals can be more clearly observed. The dataset
numbers were assigned in the order from Table 3.2, beginning at 1.

55

0 1 2 3 4 5 6 7 8 9
0.7

0.75

0.8

0.85

0.9

0.95
Learncurve for Dataset #3

Training set (8−9=CV, 7=75%, 6=62%,.. 1=25%)

H
ol

d−
ou

t a
cc

ur
ac

y

0 1 2 3 4 5 6 7 8 9
0.5

0.55

0.6

0.65

0.7

0.75

0.8
Learncurve for Dataset #4

Training set (8−9=CV, 7=75%, 6=62%,.. 1=25%)

H
ol

d−
ou

t a
cc

ur
ac

y

0 1 2 3 4 5 6 7 8 9
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99
Learncurve for Dataset #5

Training set (8−9=CV, 7=75%, 6=62%,.. 1=25%)

H
ol

d−
ou

t a
cc

ur
ac

y

0 1 2 3 4 5 6 7 8 9
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9
Learncurve for Dataset #6

Training set (8−9=CV, 7=75%, 6=62%,.. 1=25%)

H
ol

d−
ou

t a
cc

ur
ac

y

0 1 2 3 4 5 6 7 8 9
0.65

0.7

0.75

0.8

0.85

0.9
Learncurve for Dataset #7

Training set (8−9=CV, 7=75%, 6=62%,.. 1=25%)

H
ol

d−
ou

t a
cc

ur
ac

y

0 1 2 3 4 5 6 7 8 9
0.6

0.8
Learncurve for Dataset #8

Training set (8−9=CV, 7=75%, 6=62%,.. 1=25%)

H
ol

d−
ou

t a
cc

ur
ac

y

0 1 2 3 4 5 6 7 8 9
0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8
Learncurve for Dataset #9

Training set (8−9=CV, 7=75%, 6=62%,.. 1=25%)

H
ol

d−
ou

t a
cc

ur
ac

y

0 1 2 3 4 5 6 7 8 9
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85
Learncurve for Dataset #10

Training set (8−9=CV, 7=75%, 6=62%,.. 1=25%)

H
ol

d−
ou

t a
cc

ur
ac

y

Figure 6.2: Learning curves for dataset balance-scale to glass.

56

0 1 2 3 4 5 6 7 8 9
0.65

0.7

0.75

0.8

0.85

0.9
Learncurve for Dataset #11

Training set (8−9=CV, 7=75%, 6=62%,.. 1=25%)

H
ol

d−
ou

t a
cc

ur
ac

y

0 1 2 3 4 5 6 7 8 9
0.65

0.7

0.75

0.8

0.85

0.9
Learncurve for Dataset #12

Training set (8−9=CV, 7=75%, 6=62%,.. 1=25%)

H
ol

d−
ou

t a
cc

ur
ac

y

0 1 2 3 4 5 6 7 8 9
0.65

0.7

0.75

0.8

0.85

0.9
Learncurve for Dataset #13

Training set (8−9=CV, 7=75%, 6=62%,.. 1=25%)

H
ol

d−
ou

t a
cc

ur
ac

y

0 1 2 3 4 5 6 7 8 9
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Learncurve for Dataset #14

Training set (8−9=CV, 7=75%, 6=62%,.. 1=25%)

H
ol

d−
ou

t a
cc

ur
ac

y

0 1 2 3 4 5 6 7 8 9
0.7

0.75

0.8

0.85

0.9

0.95
Learncurve for Dataset #15

Training set (8−9=CV, 7=75%, 6=62%,.. 1=25%)

H
ol

d−
ou

t a
cc

ur
ac

y

0 1 2 3 4 5 6 7 8 9
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Learncurve for Dataset #16

Training set (8−9=CV, 7=75%, 6=62%,.. 1=25%)

H
ol

d−
ou

t a
cc

ur
ac

y

0 1 2 3 4 5 6 7 8 9

0.6

0.8

1

Learncurve for Dataset #17

Training set (8−9=CV, 7=75%, 6=62%,.. 1=25%)

H
ol

d−
ou

t a
cc

ur
ac

y

0 1 2 3 4 5 6 7 8 9
0.4

0.6

0.8

1
Learncurve for Dataset #18

Training set (8−9=CV, 7=75%, 6=62%,.. 1=25%)

H
ol

d−
ou

t a
cc

ur
ac

y

Figure 6.3: Learning curves for dataset heart-c to lymph.

57

0 1 2 3 4 5 6 7 8 9
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6
Learncurve for Dataset #19

Training set (8−9=CV, 7=75%, 6=62%,.. 1=25%)

H
ol

d−
ou

t a
cc

ur
ac

y

0 1 2 3 4 5 6 7 8 9

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1
Learncurve for Dataset #20

Training set (8−9=CV, 7=75%, 6=62%,.. 1=25%)

H
ol

d−
ou

t a
cc

ur
ac

y

0 1 2 3 4 5 6 7 8 9
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9
Learncurve for Dataset #21

Training set (8−9=CV, 7=75%, 6=62%,.. 1=25%)

H
ol

d−
ou

t a
cc

ur
ac

y

0 1 2 3 4 5 6 7 8 9
0.6

0.8

1
Learncurve for Dataset #22

Training set (8−9=CV, 7=75%, 6=62%,.. 1=25%)

H
ol

d−
ou

t a
cc

ur
ac

y

0 1 2 3 4 5 6 7 8 9
0.55

0.6

0.65

0.7

0.75

0.8

0.85
Learncurve for Dataset #23

Training set (8−9=CV, 7=75%, 6=62%,.. 1=25%)

H
ol

d−
ou

t a
cc

ur
ac

y

0 1 2 3 4 5 6 7 8 9
0.85

0.9

0.95

1
Learncurve for Dataset #24

Training set (8−9=CV, 7=75%, 6=62%,.. 1=25%)

H
ol

d−
ou

t a
cc

ur
ac

y

0 1 2 3 4 5 6 7 8 9
0.4

0.6

0.8

1
Learncurve for Dataset #25

Training set (8−9=CV, 7=75%, 6=62%,.. 1=25%)

H
ol

d−
ou

t a
cc

ur
ac

y

0 1 2 3 4 5 6 7 8 9
0.4

0.6

0.8

1
Learncurve for Dataset #26

Training set (8−9=CV, 7=75%, 6=62%,.. 1=25%)

H
ol

d−
ou

t a
cc

ur
ac

y

Figure 6.4: Learning curves for dataset primary-tumor to zoo.

58

Chapter 7

Towards a Theoretical

Framework

In this chapter, we show that the ensemble learning scheme Stacking is universal
in the sense that most ensemble learning schemes systems – Voting, Selection by
Crossvalidation (X-Val), Grading and even Bagging – can be mapped onto Stacking

via specialized meta classifiers. We present operational definitions of these meta
classifiers for each scheme. In each case, running Stacking with the appropriate
meta classifier simulates the respective ensemble learning scheme’s operation
perfectly, although – as with every simulation – the runtime performance may
be worse.

For Grading (Seewald & Fürnkranz, 2001) which would ordinarily not be
mappable, we show that an alternative parameter setting can transform it into
a mappable form without sacrificing its unique performance.

Finally we show that, by additionally modifying the training set of the base
classifiers with a simple wrapper, Bagging (Breiman, 1996) can also be simulated.
Thus Stacking can be seen as a conceptual abstraction for most ensemble learning
schemes.

7.1 Introduction

Let us recall a final time how Stacking works in order to lay the foundations for
our functional definitions of meta classifiers later on. Figure 7.1 shows Stacking

on a hypothetical dataset with three classes, n examples and N base classifiers.
Figure 7.1(a) shows the original dataset. Each example consists of an attribute
vector of fixed length, followed by a class value.

During training, all base classifiers are evaluated via crossvalidation on the
original dataset. We follow the extension of (Ting & Witten, 1999) of using
the base classifiers’ class probabilities. Each classifier’s output is therefore a
class probability distribution for every example. Figure 7.1(b) shows how such
a reasonable class probability distribution from a single classifier may look. The
rows correspond to the examples from the original training set, see Figure 7.1(a).

The concatenated class probability distributions of all base classifiers in a
fixed order, followed by the class value, forms the meta-level training set for
Stacking’s meta classifier, see Figure 7.1(c). After training the meta classifier,

59

Attrs Cl.

AttrV ec1 a

AttrV ec2 b

AttrV ec3 b

AttrV ec4 c
...

...
AttrV ecn a

(a) original training set

a b c

0.90 0.05 0.05
0.15 0.70 0.15
0.10 0.80 0.10
0.20 0.20 0.60

...
...

...
0.80 0.10 0.10

(b) sample class probability distribution

Classifier1 Classifier2 ClassifierN

a b c a b c a b c class

P1,a1 P1,b1 P1,c1 P2,a1 P2,b1 P2,c1 . . . PN,a1 PN,b1 PN,c1 a

P1,a2 P1,b2 P1,c2 P2,a2 P2,b2 P2,c2 . . . PN,a2 PN,b2 PN,c2 b

P1,a3 P1,b3 P1,c3 P2,a3 P2,b3 P2,c3 . . . PN,a3 PN,b3 PN,c3 b

P1,a4 P1,b4 P1,c4 P2,a4 P2,b4 P2,c4 . . . PN,a4 PN,b4 PN,c4 c
...

...
...

...
P1,an P1,bn P1,cn P2,an P2,bn P2,cn . . . PN,an PN,bn PN,cn a

(c) training set for Stacking’s meta classifier

Figure 7.1: Illustration of Stacking on a dataset with three classes (a, b and
c), n examples and N base classifiers. Pi,jk refers to the probability given by
classifier i for class j on example number k

the base classifiers are retrained on the complete training data.1 Thus, Stacking’s
meta classifier is free to learn arbitrary complex models to predict the true class
from the class probabilities of its base classifiers, making it clearly the most
flexible ensemble learning scheme.

For testing, the base classifiers are queried for their class probability distri-
butions. These form a meta-example for the meta classifier which outputs the
final class prediction. Any meta classifier for Stacking must therefore learn a
mapping from a vector of concatenated class probabilities to a predicted class
value from training data, and later apply this learned mapping to a new vector.

7.1.1 Definitions

In this section we shall give some definitions for important concepts and terms.
Without loss of generality let us assume that a fixed training dataset with
n examples and k classes, and a single test instance2, is given. N arbitrary
base classifiers have already been cross-validated on this dataset, each yielding
a prediction for all n examples, and have afterwards been retrained on the
complete training dataset. We also assume that all base classifiers output class
probability distributions, i.e. estimated probabilities for each class instead of
deciding on a single class.

1Interestingly, not retraining the base classifiers usually yields slightly worse results.
2Since during testing, no learning takes place – i.e. the learned model of all classifiers

remains constant – instances can be processed in arbitrary order. Thus, demonstrating equiv-
alence for a single test instance is sufficient.

60

Then, Pijk refers to the probability given by classifier i for class j on example
number k during the internal cross-validation. Let us now denote P ik to signify
the complete class probability distribution of classifier i on instance k. If no
k is given, P i refers to the class probability distribution for classifier i on the
unknown instance during testing. For completeness we also have to assume a
fixed arbitrary order on the class values so that each class is at the same position
in all P ik considered, and a fixed arbitrary order on the N base classifiers.
Classk denotes the true class for instance k from the training set. AttrV eck

corresponds to the attribute vector of instance k. We consider all indices to be
zero-based, e.g. the instance id k satisfies the equation 0 ≤ k ≤ n − 1.

δ(x, y) is the well-known delta function (7.1). In case the notation is not
generally known, we also define argmax (7.2) to signify the first entry where
the corresponding value is equal to the maximum. This allows to determine the
predicted class from a given class probability distribution and also takes care of
non-unique maximal values3.

δ(x, y) =

{

1 if x = y
0 if x 6= y

(7.1)

argmax
i

(Ai) ≡ min{i | Ai = max
∀i

(Ai)} (7.2)

As we mentioned, we assume that all ensemble learning schemes return class
probability distributions. If predictions are needed, the position of the maximum
class probability in the vector – i.e. the predicted class – is easily obtained via
formula (7.2)

We can now characterize every ensemble learning scheme by what features it
extracts from the meta dataset during training and how these features define the
mapping from meta dataset to final class probability distribution during testing.
Thus, each meta classifier which simulates the corresponding ensemble learning
scheme can be defined by two characteristic functions: One, the features which
are extracted from the meta dataset and how they are computed. Two, how
these features are used during testing to determine the final class probability
distribution.

7.2 Mapping Ensemble Learning Schemes

We show that Stacking using class probability distributions is equivalent to the
following ensemble learning schemes, given appropriate meta classifiers.

• Stacking is the stacking algorithm as implemented in WEKA, which follows
(Ting & Witten, 1999). It constructs the meta dataset by adding the
entire predicted class probability distribution instead of only the most
likely class. Trivially, Stacking with predictions can also be simulated by
transforming the class distributions meta dataset to predictions prior to
applying the meta classifier via Formula (7.2)

• X-Val chooses the best base classifier on each fold by an internal ten-fold
CV. This is also known as Selection by Crossvalidation, a widely used
ensemble technique in machine learning.

3In that case, choosing the more common class is also a reasonable alternative

61

• Voting is a straight-forward extension of voting for distribution classifiers.
Instead of giving its entire vote to the class it considers to be most likely,
each classifier is allowed to split its vote according to the base classifier’s
estimate of the class probability distribution for the example. I.e. the
mean class distribution of all classifiers is calculated. It is the only scheme
which does not use an internal crossvalidation. We also show that more
common voting of predictions can be simulated by Stacking.

• Grading is the grading algorithm (Seewald & Fürnkranz, 2001). Basically,
Grading trains one meta classifier for each base classifier which tries to
predict when its associated base classifier fails. This decision is based on
the original attributes from the dataset. A weighted voting of the base
classifiers prediction gives the final class prediction. The confidence for a
correct prediction of a base classifier, which is estimated by its associated
meta classifier, is used as weight.

• Bagging (Breiman, 1996) is another common ensemble technique. Here,
the same type of classifier is repeatedly trained on new datasets, which
have been generated from the original dataset via random sampling with
replacement. Afterwards, the component classifiers are combined via sim-
ple unweighted voting.

We shall proceed to show how every one of them can be simulated by Stacking

with an appropriate meta classifier. We give functional descriptions of the map-
ping from meta dataset to features during training and from features to final
prediction during testing. For Bagging, a simple wrapper is necessary around
each base classifier, which simulates random sampling with replacement.

7.2.1 Voting

Voting is the simplest case. During training, no features are extracted from the
meta dataset. In fact Voting does not even need the internal crossvalidation.
Since after training the base classifiers are retrained on the complete training
set, the base classifiers are then equivalent to those normally used in Voting.

During testing, Voting determines the final class probability distribution as
follows, i.e. as mean class probability distribution for the current unknown
instance.

pred =

N
∑

i=1

P i

N
(7.3)

Thus, it can be easily seen that the meta classifier defined by just computing
the mean probability distribution of the base classifiers – as above – simulates
Voting with probability distributions.

Voting with predictions can be mapped similarily. In this case, we use P ′
i

instead of P i in Formula (7.3). P ′
i is the vector of P ′

ij for all j, where

P ′
ij =

{

1 if j = arg maxj (Pij), for given i
0 otherwise

(7.4)

In essence, this simplifies the class probability distribution to a vector of zeros
with just a one where the most probable class was earlier. Summing over these

62

simplified class probability distributions is clearly equivalent to counting the
number of votes per class over all classifiers. Again, the class with the high-
est number of votes is chosen as final prediction. Concluding, we have shown
Stacking to be equivalent to Voting in either variant, using the proposed meta
classifier.

7.2.2 X-Val

For X-Val, we first determine the accuracy per classifiers as estimated by the
internal crossvalidation, which can be computed directly from the meta-level
dataset, see (7.6). Then, we derive as feature the id of the classifier with the
maximum accuracy. Thus, the value of bestC corresponds to our learned model.

bestC = arg max
i

(Acci) (7.5)

where

Acci =
1

n

n
∑

k=1

δ(argmax
j

(Pijk), Classk) (7.6)

During testing, X-Val simply returns the distribution from best base classifier
bestC.

pred = P bestC (7.7)

7.2.3 Grading

For Grading, the case is quite difficult. Since Grading’s meta classifiers4 base
their model on the original dataset’s attributes, at first glance it seems to be
impossible to map it onto Stacking as specialized meta classifier – at least without
utilizing bi-level stacking (Schaffer, 1994).

However, during an evaluation of Grading we noted that there is very little
difference between meta classifiers, always less than 1%, see Table 7.1. This
was also found by the original authros, see the technical report of Seewald &
Fürnkranz (2001). This puzzled us for some time and eventually prompted us
to run our own experiments using a baseline learner as meta classifier which
always outputs a fixed probability distribution based only on the most common
class. The idea was to find out how much of the performance gain is due to the
combining scheme and thus independent of the meta classifier.

We were surprised to note that this trivial meta classifier, ZeroR, is compet-
itive to all other meta classifiers we evaluated and even once outperforms them
all, see Table 7.1. So it is a reasonable alternative meta classifier to IBk with
ten nearest neighbors, which was used in (Seewald & Fürnkranz, 2001) and we
propose it for further experiments.

What does this alternate meta classifier mean for Grading? Basically, Grad-

ing does not grade – it works solely because reasonable meta classifiers will
be as good as the baseline accuracy, while getting better than that seems to
be extremely hard. Based on Grading’s combining scheme, the predictions are

4Note that both Stacking and Grading have the parameter meta classifier. While Stacking has
a single meta classifier, there is one for each base classifier in Grading– all of the same type.

63

weighted by p(+), so in this setting Grading is essentially equivalent to accuracy-
weighted voting of the base classifiers predictions, where the accuracy is esti-
mated via cross-validation.5

Given our proposed new meta classifier, it is now possible to map Grading

onto Stacking. During training, the accuracies of base classifiers are extracted
using Formula (7.6). The accuracies of all our base classifiers correspond to
our learned model. During testing, we build the combined class probability
distribution similar to Voting using predictions but with an additional weight –
namely the accuracy we extracted earlier.

pred =
1

∑N
i=1 Acci

N
∑

i=1

[

Acci

P ′
i

N

]

(7.8)

where P ′
i is again the vector of P ′

ij for all j. P ′
ij is taken from Formula (7.4).

A straightforward extension of this which we have not yet evaluated is
accuracy-weighted voting of base classifier’s class probability distributions, which
is given in the following Formula.

pred =
1

∑N

i=1 Acci

N
∑

i=1

[

Acci

P i

N

]

(7.9)

Thus, we have shown that Stacking can simulate Grading without sacrificing its
unique performance.

7.2.4 Bagging

For Bagging, the same meta classifier as for Voting with predictions is used.
The number of base classifiers is equal to the iteration parameter of bagging
– each base classifier for Stacking corresponds to one instantiation of the base
learner for bagging. In order to simulate the random sampling from the training
set, the base learner’s training sets have to be modified before training, via
Formula (7.10).

newTrain = {[AttrV ecij
, Classij

]|ij = rand(0, n), ∀ 0 ≤ j < n} (7.10)

rand(a, b) ... generates integer random numbers from interval [a,b)

During training, Formula (7.10) is used to create – for each base classifier sep-
arately – a training set of the same size as the original training set via random
sampling from the original training set, exactly as in Bagging. These training
sets are then used to train the base classifiers. This approach can also be seen

5The meta datasets for Grading are different for each base classifier and consist of the
original attributes, followed by a binary attribute which encodes whether the base classifier
did (+) or did not (-) correctly predict the class of the respective instance during the cross-
validation. The class distribution of this meta dataset is directly related to the cross-validated
accuracy of its base learner, i.e. p(+) = Acc and p(−) = 1 − Acc – so the better the learner
performs, the more unbiased the class distribution becomes. Under these circumstances it is
not unreasonable to expect this to be a very hard learning task, which can seldom be solved
better than the baseline of always predicting +. Based on the reasonable assumption that all
classifiers have an accuracy of at least 50%, the most common class will be + and then Grading

will be equivalent to accuracy-weighted voting.

64

as a probabilistic wrapper around each base classifier. No features are extracted
from the meta-level dataset during training, as for Voting.

During testing, each base classifier gives a prediction. These predictions are
then voted to yield the final prediction, exactly as for Voting with predictions, i.e.
(7.3) modified via (7.4) – for more details refer to subsection 7.2.1. Concluding,
we have shown the equivalence of Bagging and Stacking.

7.2.5 Others

By definition StackingC, see Chapter 5, can also be mapped onto Stacking via a
specialized meta classifier. In fact, the current implementation is a subclass of a
common meta classifier, MLR. Another recent variant, sMM5 (Džeroski & Zenko,
2002), is also implemented via a special meta classifier and thus amenable to
the same kind of mapping. Therefore, Stacking is also equivalent to both of these
new variants, given appropriate meta classifiers.

However, AdaBoost (Freund & Schapire, 1996) cannot be simulated by Stack-

ing because of its mainly sequential nature.6

7.3 Experimental Issues

While the given formal definitions of meta classifiers are mainly intended to
enable further theoretical work, a direct implementation is also feasible. On the
assumption that our models are correct, an implementation could serve to inves-
tigate runtime performance, i.e. the cost penalty for the simulation. However,
since training the meta classifier usually contributes little to the total runtime
– the main cost is due to the internal cross-validation of all base classifiers – we
consider this unnecessary. In most cases, the expected runtime cost of the sim-
ulation is expected to be comparable to that of the original system. In case of
Grading it is even expected to be slightly less, since our proposed meta classifier
is much faster than the original classifier proposed in (Seewald & Fürnkranz,
2001). Only for Voting, which does not need the internal cross-validation at
all, the runtime cost of the simulation is expected to be about one order of
magnitude higher. We believe that the advantage of having a comprehensive
description of all these schemes within a single framework outweighs this cost
penalty for Voting.

6Or, to be more precise: While its training phase could potentially be simulated, using bi-
level Stacking (Schaffer, 1994), replacing internal cross-validation estimates with training set
performance estimates and utilizing multi-level vertical stacking – i.e. putting each classifier
on top of the last one: one level for each iteration – and some elaborate wrappers between
adjacent levels, its testing phase can regrettably not be simulated. AdaBoost computes a
weighted vote of its component classifiers, whereas in multi-level Stacking the predictions of
the classifiers are propagated upwards, beginning at the lowest level, and are thus processed
by each component classifier in turn. So, in order to simulate AdaBoost, we would have to
either modify the component classifiers as well, or change the basic structure of Stacking. We
opted to leave this problem open until a more complete understanding of combining methods
offers a simpler approach.

65

7.4 Related Research

To our knowledge, there is no related research concerned with the theoretical
equivalence or practical simulation of ensemble learning schemes. The con-
ceptual closeness of most ensemble learning schemes is of course no surprise;
however, we seem to have been the first to formalize this closeness towards
achieving a general theoretical framework.

7.5 Conclusion

We have shown that Stacking is equivalent to most ensemble learning schemes,
namely Selection by Crossvalidation (X-Val), Voting of either class probability
distributions or predictions, and Grading. We have given functional descriptions
of suitable meta classifiers for Stacking which simulate the operation of these
ensemble learning schemes. By a simple wrapper we were also able to simulate
Bagging. Recent variants such as StackingC(Seewald, 2002a), see also Chapter 5
and sMM5 (Džeroski & Zenko, 2002) can also be simulated in the same way.
So all these schemes can essentially be reduced to Stacking with an appropriate
combining scheme. Thus we conclude that our approach offers a unique view-
point on Stacking which is an important step towards a theoretical framework
for ensemble learning.

This endeavour also allows to reformulate the choice of best ensemble learn-
ing system as best meta classifier choice. As such, it is potentially amenable to
an approach using pre-estimated meta data to choose between meta classifiers,
which we initially tested for our experiments from Chapter 3.

Another possible venue for future research may be to build tailored meta
classifiers for specific problems, using the definitions of other ensemble learning
schemes as background knowledge to guide the search process. Research into
alternative meta classifiers for Stacking seems also a reasonable course, given
that two recent variants (StackingC, sMM5) have been successful in this area
using quite simple approaches.

66

Table 7.1: Grading with different level 1 classifiers. The first column shows the
accuracy of IBk(originally used in [Seewald and Fuernkranz, 2001]), all other

columns show accuracy ratios for the respective meta-learners (Acc(Metai)

Acc(IBk)
).

The last column shows the results for our baseline learner, ZeroR. Average
accuracy and standard deviation per column are also shown.

Dataset IB
k

D
ec

is
io

n
T
a
b
le

J
4
8

K
er

n
el

D
en

si
ty

K
S
ta

r

M
L
R

N
a
iv

eB
ay

es

Z
er

o
R

audiology 84.51 0.990 0.990 0.979 1.011 0.990 1.005 1.000
autos 81.95 1.006 1.006 0.964 1.000 0.964 1.006 1.030
balance-scale 89.76 1.000 0.998 1.000 1.002 1.000 1.000 1.000
breast-cancer 74.48 1.000 0.986 1.005 1.009 1.009 1.000 0.991
breast-w 96.57 1.000 1.002 0.997 1.000 0.999 1.002 0.998
colic 84.78 0.994 1.003 0.997 1.003 0.984 0.997 1.000
credit-a 86.09 0.992 0.993 0.995 0.997 0.985 0.992 0.882
credit-g 75.90 0.993 0.990 1.000 0.983 0.979 0.988 1.134
diabetes 76.30 1.009 1.005 1.005 1.009 1.003 1.002 1.009
glass 73.36 1.019 1.000 1.026 1.026 1.038 1.013 1.032
heart-c 85.48 0.973 0.969 0.973 0.981 0.965 0.985 0.988
heart-h 83.33 1.012 1.012 0.976 0.984 1.004 1.004 1.008
heart-statlog 83.70 0.996 0.982 0.960 0.974 0.982 0.987 0.996
hepatitis 81.94 1.008 1.024 1.032 1.016 1.016 1.047 1.032
ionosphere 91.17 1.006 1.006 1.000 1.000 1.006 1.010 1.009
iris 95.33 1.000 1.000 1.007 1.000 1.007 1.000 1.000
labor 94.74 1.000 1.000 1.000 1.000 1.000 1.000 1.000
lymph 84.46 1.016 1.024 0.984 1.000 1.024 1.008 1.032
primary-tumor 49.26 0.964 0.922 0.892 0.964 0.964 1.000 0.958
segment 98.10 1.000 0.999 0.997 0.995 0.997 0.997 1.000
sonar 86.06 0.972 0.944 0.989 0.978 0.967 0.983 0.972
soybean 94.00 0.997 1.000 1.000 0.975 0.9984 1.003 0.998
vehicle 74.47 1.025 1.011 0.989 0.981 1.033 1.025 1.019
vote 96.09 0.998 1.000 0.998 0.998 0.995 0.995 1.000
vowel 98.79 0.997 1.001 0.997 0.998 0.994 0.998 0.991
zoo 97.03 1.000 1.000 1.010 0.990 0.990 1.010 1.000

Avg 85.29 0.999 0.995 0.991 0.995 0.996 1.002 1.003
± 10.81 0.014 0.022 0.026 0.014 0.020 0.013 0.040

67

Chapter 8

Information Visualization

In this chapter we will shortly introduce Information Visualization, which is a
fairly new field that deals with visualization of high-dimensional data where no
inherent spatial or temporal structure is present. We will then apply methods
from this field to visualize all our datasets, noticing some irregularities and
inconsistencies which we will discuss on a case-by-case basis. Afterwards we will
visualize our experimental results for the best variant, StackingC from Chapter 5,
based on the dataset visualization, and also a compressed representation. Icons
are used to encode classifier performance on distinct instances. Afterwards, we
briefly mention related research and conclude this chapter with an outlook on
future applications of Information Visualization in Machine Learning.

8.1 Introduction

Within the scope of this thesis, we can only hope to give a short introduction
to Information Visualization. (Card, Mackinlay & Shneiderman, 1999) offers a
more comprehensive overview of this field.

In Information Visualization, contrary to classical Scientific Visualization,
there is usually no inherent spatial or temporal structure present in the data.
Information visualization deals with heterogenous, high-dimensional data, so
the use of appropriate visual metaphors is necessary. The interaction with the
user in context of real-time explorative data analysis offers the highest benefits
– however, within this thesis we cannot offer any user interaction, so our choice
of methods is more limited.

In Information Visualization literature, five general techniques can be dis-
cerned (Keim & Kriegel, 1996)

• Geometric – e.g. scatterplots and parallel coordinates.

• Icon-based – e.g. chernoff faces, stick figures and the glyphs we shall use
later.

• Pixel-based – e.g. recursive pattern techniques and circle segments.

• Hierarchical – e.g. cone/cam trees and treemaps.

• Graph-based – e.g. polylines and curved lines.

68

Aonther dimension to be considered is interaction techniques. However, in
our case no interaction with the user can take place, so within the scope of this
thesis this is not a relevant dimension.

Within standard machine learning literature, simple graph-based techniques
are most commonly used – e.g. learning curves, scatterplots, bar charts and
line charts. Parallel coordinates are rarely used, possibly because this technique
works best in an interactive setting. Hierarchical and graph-based visualization
methods are also rarely used. Pixel-based techniques, while being the most
dense methods – i.e. able to visualize the highest amount of data on a given
area – are also the hardest to grasp.

We believe that both geometric and icon-based techniques show the greatest
future potential for visualizing both experimental results and the respective
datasets, and also for interactive exploration of results. Still, almost all journals
and conference proceedings are printed in black and white; color pages are – if at
all possible – very expensive and sometimes even high-resolution graphics (e.g.
photos) can pose a problem. Under these circumstances it is understandable
that most machine learning literature restricts itself to very simple visualization
methods.

Of these methods, the hierarchical technique is not applicable to our data
since there is no obvious hierarchical structure. The graph-based technique is
also not applicable since we deal with independent examples – there are generally
no meaningful relations between instances. Geometric methods have been used
throughout this thesis and will also be used here, mostly in the form of line
charts and scatterplots. Since all our datasets are small enough for alternative
visualization methods, the additional denseness of pixel-based methods offers
no significant advantages. Thus, we found icon-based methods most inspiring.
So we will focus mainly on geometric and icon-based methods in the remainder
of this chapter.

8.2 Visualizing Instance Space

In this section we take a close look at the twenty-six datasets which we chose for
all experimental evaluations in this thesis, see Table 8.1. This section may seem
somewhat of an afterthought – at first glance it would have made more sense to
know our data before running extensive experiments. However, as proponents
of tabula rasa machine learning, we treated our datasets as black boxes until
now, in order to prevent even the temptation to contaminate our results, e.g.
by parameter tuning, recoding of attributes, removing inconsistent instances or
even removing complete datasets. We were mainly interested in those kinds of
insight in Stacking which are independent of the datasets in question; thus it is
clear that such an analysis should only be made after all experimental results
are obtained.

For us, instance space is the multidimensional vector space of all possible
examples which can potentially be represented in a given dataset. Each example,
or instance, is thus a point in this usually high-dimensional space, where each
dimension is either continuous (for numeric attribute) or discrete (for nominal
attributes)

69

Table 8.1: The used datasets with number of classes and examples, discrete and
continuous attributes, baseline accuracy (%) and entropy in bits per example
(Kononenko & Bratko, 1991). Class frequencies are shown in descending order;
the length of every black and white bar determines one class frequency each.

Dataset cl Inst disc cont bL E class frequencies

audiology 24 226 69 0 25.22 3.51
autos 7 205 10 16 32.68 2.29
balance-scale 3 625 0 4 45.76 1.32
breast-cancer 2 286 10 0 70.28 0.88
breast-w 2 699 0 9 65.52 0.93
colic 2 368 16 7 63.04 0.95
credit-a 2 690 9 6 55.51 0.99
credit-g 2 1000 13 7 70.00 0.88
diabetes 2 768 0 8 65.10 0.93
glass 7 214 0 9 35.51 2.19
heart-c 5 303 7 6 54.46 1.01
heart-h 5 294 7 6 63.95 0.96
heart-statlog 2 270 0 13 55.56 0.99
hepatitis 2 155 13 6 79.35 0.74
ionosphere 2 351 0 34 64.10 0.94
iris 3 150 0 4 33.33 1.58
labor 2 57 8 8 64.91 0.94
lymph 4 148 15 3 54.73 1.24
primary-t. 22 339 17 0 24.78 3.68
segment 7 2310 0 19 14.29 2.81
sonar 2 208 0 60 53.37 1.00
soybean 19 683 35 0 13.47 3.84
vehicle 4 846 0 18 25.41 2.00
vote 2 435 16 0 61.38 0.96
vowel 11 990 3 10 9.09 3.46
zoo 7 101 16 2 40.59 2.41

For visualization of the instance space, we chose Sammon Mapping (Sam-
mon, 1969; Borg & Groenen, 1997)1, an iterative gradient-descent method which
tries to reduce the stress in a mapping from high-dimensional to low-dimensional
data. Missing values have been previously replaced by the mean resp. the mode
of the full dataset. Nominal values were coded via 1-of-n coding. Numeric val-
ues were normalized to be within the interval [0,1] for all values. We used the
recoded attributes without the class as input for Sammon Mapping and added
the class afterwards. So, any apparent correlations between visible clusters and
classes is present in the euclidean distance of examples and may indicate that
an instance-based classifier is most appropriate for the respective dataset, as
Sammon Mapping aims to preserve the euclidean distances between instances.

We rejected Principal Components Analysis after initial experiments because
its linear projection on orthogonal axes is less general and the representation
is noticeably worse for some datasets, e.g. soybean. We rejected self-organizing

1We used the Sammon Mapping implementation from Vesanto, Himberg, Alhoniemi &
Parhankangas (2000), which was written in MatLab script language. It worked quite well for
almost all datasets, but in two cases we had to reduce the learning rate significantly to obtain
convergence.

70

−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
balance−scale sammon−mapping (stress=0.093)

1st Dimension

2n
d

D
im

en
si

on

L
R
B

Figure 8.1: Instance space visualization of balance-scale via Sammon-Mapping.
The regular structure of this visualization is striking. We found out that this is
due to the fact that the input is exhaustive: for all four variables, all values from
zero to one in steps on 0.25 appear. This is actually a synthetic dataset, with a
non-linear perfect model and thus of questionable use in empirical experiments.
Adding appropriate attributes makes the problem trivial to solve.

maps (SOMs), because Flexer (2001) showed that SOMs perform significantly
worse in terms of quantization error, in recovering the structure of clusters and
in preserving the topology of the multidimensional dataset. Also, Bezdek &
Nikhil (1995) compared SOMs to principal components analysis and sammon
mapping and show that it performs worse than either of the classical methods
in the context of multidimensional scaling.

Visualization of the complete instance space via parallel coordinates was
also rejected, mainly because high overlap between instances made it all but
impossible to achieve a reasonable representation which shows all the exam-
ples and their classes clearly. However, for interactive exploration the parallel
coordinates approach could have been quite useful. Appendix A shows all vi-
sualizations from this and the next section as full-page figures. Selected figures
are duplicated here in smaller size for faster access. Observations are mentioned
in the respective figures’ captions, but for conciseness we will now summarize
and interpret our findings.

1. We found a mismatch between reported number of classes – between the
dataset documentation and those classes which really appear in the dataset
– in five cases. In three of them, only one class does not appear. Since
all these datasets have at least seven classes, this should be of marginal
significance. However in two cases, heart-c and heart-h, the number of
reported classes is five but the actual classes are two2 – a much larger

2The true number of classes can e.g. be found out by counting the number of entries in
the legend of the respective figures. It would in principle be possible that one or more classes

71

gap, possibly caused by a translation error to the ARFF format3. Thus,
in Chapter 5, when we compared datasets with two- and more than two
classes, these two datasets ended up on the wrong side of the comparison!
As we have verified, this changes our experimental results only slightly and
leaves the main conclusions intact, but still remains somewhat unsettling.

2. For quite some datasets with many classes, there are very few examples for
the least-frequent classes – in some cases only one! Clearly, one example
is not sufficient to learn anything, but even two examples are insufficient
in most if not all cases. This has motivated us to visualize actual class
distributions in Table 8.1, which convey this additional information. Mis-
matches between reported and actual classes (1) are also easily recogniz-
able then, at least in the case of gross differences.

3. We found the regular structure of balance-scale (Fig.8.1) striking. By
close inspection, we found out that this is due to the fact that the input
is exhaustive: for all four variables, all values from zero to one in steps on
0.25 appear. When investigating the documentation, we found out that
this is a purely synthetic dataset without noise, based on a non-linear
model of a balance scale. Adding appropriate derived attributes could
make the problem trivial to solve. This dataset is of questionable use for
empirical studies since it is clearly not a real-life dataset.

4. For some datasets, Sammon Mapping shows some visible clusters cor-
responding to classes, mostly breast-w, iris, segment, soybean and zoo
(Fig.8.2(a)-8.2(e)). Notice that this happended although the classes were
not part of the input to the technique. In another case, vowel (Fig.8.2(f),
the shown clusters correspond almost perfectly to the fifteen different
speakers which were asked to pronounce vowels. This confirms what is
widely known in the natural language community, namely the high vari-
ability of the speech signal between speakers which translates to large dis-
tances in instance space and thus also in the Sammon Mapping. Contrary
to expectations we voiced earlier, we were not able to observe an advan-
tage for instance based classifiers on the mentioned datasets – rather, the
best classifiers for these datasets are almost uniformly distributed.

Concluding, Sammon Mapping seems to be a good means to get more insight
into the structure of a given dataset. Although this visualization technique
works best with continuous data, we noted that appropriate recoding of nominal
attributes also yields good results. If we were concerned with real-life applica-
tions, we would now follow up on some of these interesting visual structures we
observed. However, since this is an empirical study, we will now turn towards
visualizing our experimental results – concentrating on those of the best variant,
StackingC, and its components, the base classifiers.

overlap and thus some classes are hidden in the graph, although this has not been observed
here. In any case, the legend always shows all non-empty classes.

3Both datasets were taken from the homepage of the WEKA machine learning group,
www.cs.waikato.ac.nz/~ml, dataset-UCI.jar.

72

−2 −1.5 −1 −0.5 0 0.5 1
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5
breast−w sammon−mapping (stress=0.026)

1st Dimension

2n
d

D
im

en
si

on

benign
malignant

(a) breast-w : A cluster of benign examples, sur-
rounded by mostly malginant examples is
clearly visible. The stress value for this visu-
alization is also quite small – values around
0.1 are usually observed.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
iris sammon−mapping (stress=0.011)

1st Dimension

2n
d

D
im

en
si

on

Iris−setosa
Iris−versicolor
Iris−virginica

(b) iris: The clusters are almost perfect and are
able to differentiate the classes – without
relying on previous class information.

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

2
segment sammon−mapping (stress=0.038)

1st Dimension

2n
d

D
im

en
si

on

brickface
sky
foliage
cement
window
path
grass

(c) segment : Two classes, sky and grass, are
clearly visible clusters; the others are mixed
together.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5
soybean sammon−mapping (stress=0.12)

1st Dimension

2n
d

D
im

en
si

on

brown−spot
alternarialeaf−spot
frog−eye−leaf−spot
phytophthora−rot
brown−stem−rot
anthracnose
diaporthe−stem−canker
charcoal−rot
rhizoctonia−root−rot
powdery−mildew
downy−mildew
bacterial−blight
bacterial−pustule
purple−seed−stain
phyllosticta−leaf−spot
2−4−d−injury
diaporthe−pod−&−stem−blight
cyst−nematode
herbicide−injury

(d) soybean: For most classes, good clusters
are visible. Also, the form of the clusters
was very striking. The stress is still quite
high, but a visualization in higher dimen-
sions could possibly add some insight.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
zoo sammon−mapping (stress=0.092)

1st Dimension

2n
d

D
im

en
si

on

mammal
bird
fish
invertebrate
insect
reptile
amphibian

(e) zoo: This is a very sparse dataset – the
second-smallest one – however the clusters
are quite good.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
vowel sammon−mapping (stress=0.103)

1st Dimension

2n
d

D
im

en
si

on

hid
hId
hEd
hAd
hYd
had
hOd
hod
hUd
hud
hed

(f) vowel : The clusters are not related to the
classes in this case, but correspond to the
fifteen different speakers.

Figure 8.2: These subfigures show all datasets with striking clusters.

73

8.3 Visualizing Prediction Space

Instance space only depends on the dataset in question. However, prediction
space as the space of possible predictions for instances includes not only the pre-
diction of the respective scheme, StackingC, but also of its components, the base
classifiers. All other parameters for the learner or its components would also be
parts of prediction space, since these may influence predictive performance. In
our case there are no additional parameters since we left all base classifiers at
their default values. As simplification we chose to only consider two values for
each prediction: correct or incorrect, compared to the true class. While inter-
class differences may be worthwhile to study, in our case it would increase the
information to be conveyed by an order of magnitude. Furthermore, the small
size of most minor classes makes observation difficult. At last the independence
of prediction space from the number of classes allows us to generate an overall
result by averaging over all datasets, which would not be possible otherwise.

A feasible alternative would have been to use InfoCrystal (Spoerri, 1995),
which is a generalization of classic Venn diagrams – able to show boolean rela-
tionships between an arbitrary number of sets, where Venn diagrams are only
useful for up to three sets. However, no free implementation is available from
the author.

We define prediction space as the vector space of possible predictions, for all
four base classifiers and StackingC itself. Thus, each instance can be mapped onto
a point in this five-dimensional space by determining for each dimension, i.e.
scheme, whether or not it predicted the correct class for the mentioned instance,
at the point where the instance was part of the crossvalidation test fold.4 Since
each dimension can take on only two values, this vector space is quite small –
only 32 unique points in our case, so many instances will be mapped to the
same point in prediction space5. We investigated two approaches to deal with
this limitation.

1. We extended prediction space with instance space. Thus, each instance
again gets a sufficiently unique location, which we can visualize via Sam-
mon Mapping. We defined simple glyphs to capture the information from
the original prediction space, see left side of Figure 8.3. These results can
be found in Appendix A.

2. Another approach is to count the number of instances for each unique point
in prediction space and visualize their number via glyph size. This has
been done using the same glyphs as in (1), where their previously constant
surface area is now proportional to the number of instances. This does
not allow to distinguish between specific instances, but the prevalence of
each category is apparent at a single glance. Figure 8.3 shows all glyphs in
the same order as in the later figures. Figures 8.5 to 8.7 show the results
separately for each dataset.

4Only in this case was the instance previously unseen and thus only then can the classifier’s
prediction be considered a reasonable estimate of its performance on unseen data.

5We are aware of another simplification: StackingC utilizes class probabilities from the base
classifiers, where we consider just the predictions which is slightly less informative. So, we also
looked at the results from StackingP which utilizes just the predictions of its base classifiers.
We found them to be practically indistinguishable from the results reported here, which is
also confirmed by Chapter 3, where we found that there are no significant differences between
using predictions and probability distributions meta data

74

�

��
J48

MLR

K* NB ~
J48

MLR

K* NB

Figure 8.3: On the left side of the figure, we see two example glyphs. The main
form is a circle. A filled circle indicates that StackingC predicted the wrong class;
an empty circle indicates otherwise. Each direction (up, right, down and left)
corresponds to a base classifier (J48, NaiveBayes, MLR and KStar) as shown, where
the presence of a line indicates a correct prediction. The left glyph sample thus
encodes an example where NaiveBayes, J48 and StackingC were correct; while the
right glyph sample encodes an example where all base classifiers were incorrect,
including StackingC. If one of the base classifiers were correct in this case, we
would see a white line from the center of the filled circle into the appropriate
direction, analogous to the black line for the empty circle. On the right side of
this figure we see all thirty-two possible glyphs. The two upper rows correspond
to instances where StackingC predicted the class wrong; the other two rows to
correct predictions. The same order of glyphs is used later.

Compressed glyph visualization (averaged)

Figure 8.4: Averaged glyph visualization. The sizes of the corresponding glyphs
have been averaged over all datasets.

75

For the first visualization approach, almost no patterns are readily apparent.
What can be seen is that for almost all datasets the most frequent glyph is ⊕
which corresponds to all base classifiers and StackingC correct ; glyphs which
encode an incorrect prediction of StackingC (the filled circles, e.g. •) are seldom
found and do not seem to follow stable patterns. Because of the small number of
errors by StackingC, significant inter-class differences in prediction performance
were also not observed.

The prevalence of the ⊕ glyph can be seen more clearly in the second ap-
proach, Figure 8.5 to 8.7 – for all but two datasets, ⊕ is the glyph representing
the highest number of instances. Also, for about half of our datasets, • is
the second-most frequent glyph. Overall, the two largest groups of instances
are those where all base classifiers and StackingC are already correct and those
where none is correct. Although StackingC would potentially be able to predict
correctly even when only a minority or even none of the base classifiers were
correct, this is not observed often.

To obtain more general results, we chose to average the glyph sizes over all
datasets. The result can be found in figure 8.4. As we can see by comparing the
upper two to the lower two rows, there is a very small minority of cases where
StackingC manages to predict correctly although all base classifiers are wrong – as
expected, StackingC is still wrong on almost all cases where all the base classifiers
are wrong. If we look at the cases where one base classifier is correct, StackingC

manages to improve a bit, yielding almost equally many correct and incorrect
predictions for the best case, when the single correct base classifier is KStar.
For two correct base classifiers, StackingC becomes even better: the number of
correct predictions is about twice the number of incorrect predictions, in the
case of KStar and J48 being correct.6. For three correct base classifiers simple
voting is always able to get the final class correct – however, StackingC is not
quite as good. Although the minority of wrong predictions is quite small, in sum
it cannot be neglected. The ability of StackingC to get correct final predictions
in case of only one or two correct base classifiers has to be traded off against
this weakness. Overall, StackingC still seems to outperform voting, but given the
much higher computational cost this would be expected. Finally, if all four base
classifiers are unanimously correct – overall the most frequent case – the number
of cases where StackingC predicts a wrong class is so small as to be practically
negligible.

8.4 Related Research

Card, Mackinlay & Shneiderman (1999) have collected a variety of papers on
recent research from the field of Information Visualization. We recommend it
as general introduction into this field.

Keim & Kriegel (1996) give a comprehensive overview on visualization tech-
niques for data mining, citing essentially the same methods as in our introduc-
tion. Pixel-oriented techniqes (spiral, axes and grouping), parallel coordinates
and stick figures were implemented and made available as the VisDB toolkit7

6In some of these cases simple voting may also be able to arrive at the right class, provided
the number of classes is larger than two and the two remaining base classifiers each predict a
different wrong class

7Binaries for HPUX and Linux are available at www.dbs.informatik.uni-muenchen.de/

dbs/projekt/visdb/visdb.html. The source code does not seem to be forthcoming. We

76

Spoerri (1995) introduces InfoCrystal, a generalization of Venn diagrams for
more than three sets which has also applications for visualization and creation of
boolean queries. Their representation could have been applied to our prediction
space visualization; however, their software is unavailable.

The data-mining toolkit WEKA8 which we used for all our experiments,
offers simple one- and two-dimensional scatterplots, with color as an additional
dimension.

We now survey the techniques used or potentially useful to visualize models
of classifiers. In our case, the composite model of StackingC includes all base
classifiers’ models and is thus too complex to visualize all-at-once9

While cam-trees and cone-trees (Robertson, Mackinlay & Card, 1991) could
be used to visualize decision trees, we are not aware that this has been system-
atically investigated10. Most commercial data mining tools allow visualizing of
decision trees as two-dimensional graphs, but the problem of visualizing very
large or very unbalanced decision trees remains open.

Becker, Kohavi & Sommerfield (1997) proposes a visualization method for
the NaiveBayes classifier. Conditional probabilities, relative to class and attribute
values and the number of instances on which the probability is based are all
visible at a single glance. Their method has been integrated into SGI MineSet,
which is no longer available.

KStar and other instance-based classifiers such as IBk can easily be visualized
by computing pairwise distances between instances, exactly as used internally
by the instance-based classifier to determine nearest neighbors, and then visu-
alizing this distance matrix via appropriate dimensionality reduction methods
from multi-dimensional scaling, e.g. Sammon Mapping, Principal Components
Analysis or Self-Organizing maps. Again, we are not aware that this has been
investigated systematically.

Since MLR learns a weighted sum of attribute values, to predict each class
probability separately, the visualization is quite straightforward. The weight of
each attribute corresponds to its importance for determining the class; a weight
near zero means that the influence is small and a large negative weight means
that the attribute correlates negatively to the appropriate class probability. For
a variant similar to StackingC Ting & Witten (1999) have shown the actual
weights of the level-1 classifier, for each class separately, in a table. While this
is only a trivial visualization, more useful approaches such as bar or pie charts
(similar to (Becker, Kohavi & Sommerfield, 1997)) could easily be used. Again,
we are not aware that this has been studied systematically.

attempted to run the software, but it seems that a slight change in the X-server interfaces
since compilation prevents its use.

8available freely on www.cs.waikato.ac.nz/\~ml
9The internal crossvalidation generates ten models for each base classifier, plus one on the

complete training data. This is repeated for each step of the outer crossvalidation, yielding a
overall number of 440 models for StackingC – on each dataset. Even if we restrict ourselves
to the models used to obtain the predictions, there would still be 40 models to visualize for
each dataset.

10Although we are aware that the author programmed a tentative 3D visualization for de-
cision trees as a student, for the lecture Visualisierung at the Institute of Computer Graphics
and Algorithms, Technical University of Vienna. ;-)

77

Compressed glyph visualization for dataset audiology Compressed glyph visualization for dataset autos

Figure 8.5: Glyph visualization for datasets audiology and autos. The area
of each glyph is proportional to the number of instances in the corresponding
category.

8.5 Conclusion

We have introduced Information Visualization and applied it to the problem of
visualizing datasets (instance space) and also to visualize some of our experi-
mental results (prediction space). By means of these representations, we found
and discussed some interesting structures.

For instance space, we found a significant mismatch of the number of re-
ported and actual classes for two datasets. Also, we found quite some minority
classes with very few instances – in some cases, only one. Furthermore, we found
and identified one synthetic dataset, balance-scale, via its strikingly regular pat-
tern. Finally, we found that Sammon Mapping is able to capture partial class
structure in some datasets, although class information was not part of its input
– however, this does not correlate well with the performance of the instance-
based KStar classifier as may have been expected. This can be explained because
KStar’s internal distance measure varies significantly from our transformations
of categorical and numeric attributes.

For prediction space, we found that the two most frequent groups of instances
are first those where all base classifiers and StackingC are correct and then those
where all base classifiers and StackingC are wrong in their predictions. While
some cases exist where StackingC is able to find the correct class even when none
or a minority of base classifiers are correct, this has to be discounted against
its slightly worse performance in cases where the majority of base classifiers is
correct. Overall, StackingC still outperforms simpler methods such as Voting but
given the much higher computational cost one would have hoped for a larger
margin of benefit.

Concluding, we have found the field of Information Visualization to be a
valuable addition and inspiration for our research and hope that it will be more
widely applied in the future. However, free research tools for basic visualization
methods are quite hard to find – sadly, sometimes even the code for quite re-
cent PhDs is either no longer available or too old to run on current machines.
Therefore, we had to implement quite some methods from scratch. In our case
they are freely available – please contact the author if interested.

78

Compressed glyph visualization for dataset balance−scale Compressed glyph visualization for dataset breast−cancer

Compressed glyph visualization for dataset breast−w Compressed glyph visualization for dataset colic

Compressed glyph visualization for dataset credit−a Compressed glyph visualization for dataset credit−g

Compressed glyph visualization for dataset diabetes Compressed glyph visualization for dataset glass

Compressed glyph visualization for dataset heart−c Compressed glyph visualization for dataset heart−h

Compressed glyph visualization for dataset heart−statlog Compressed glyph visualization for dataset hepatitis

Figure 8.6: Glyph visualization for datasets audiology to hepatitis.

79

Compressed glyph visualization for dataset ionosphere Compressed glyph visualization for dataset iris

Compressed glyph visualization for dataset labor Compressed glyph visualization for dataset lymph

Compressed glyph visualization for dataset primary−tumor Compressed glyph visualization for dataset segment

Compressed glyph visualization for dataset sonar Compressed glyph visualization for dataset soybean

Compressed glyph visualization for dataset vehicle Compressed glyph visualization for dataset vote

Compressed glyph visualization for dataset vowel Compressed glyph visualization for dataset zoo

Figure 8.7: Glyph visualization for datasets ionosphere to zoo.

80

Chapter 9

Summary of Conclusions

The conclusions of the preceding chapters have already shown what we have
achieved. Still, we would like to summarize our main results here, in the order
of appearance. More detailed conclusions can be found in the corresponding
chapter. At the end of this chapter we will give overall conclusions and an
outlook towards future research.

9.1 Exploring the Parameter State Space

We have extensively explored the parameter state space of Stacking. Concerning
the choice of base classifiers, we have found a set of four base classifiers, chosen
by a priori and a posteriori arguments, which performs best. However, using
all available base classifiers also remains an acceptable option, although the
performance may slightly deteriorate.

Concerning the choice of meta classifier and choice of meta data to be used,
we have found that MLR is indeed the best meta classifier for probability dis-
tribution data. We showed probability distribution meta data and predictions
meta data to perform comparably. For predictions meta data, NaiveBayes is a
reasonable choice.

StackingC seems least influenced by specific sets of base classifiers, which
leads us to expect that base classifier choice has even less influence on StackingC

than it has on Stacking. Thus we believe that repeating our experiments with
StackingC would not lead to new insights. It still remains to be investigated
whether this is also true for sMM5 by Džeroski and Zenko (2002). More details
can be found in Chapter 3.

9.2 Meta-Learning for Stacking

Here, we have investigated whether Meta-Learning methods can be used to
accuractely predict various aspects of Stacking’s behaviour.

In the context of predicting Stacking’s accuracy, we found that classifier-
related features, namely those derived from accuracy, are excellently suited to
this task, as have others e.g. (Bensusan & Kalousis, 2001; Pfahringer et al.,
2000). A single feature, the accuracy of the best component classifier in the

81

ensemble, is able to predict the accuracy of the stacked classifier suprisingly
well.

We also investigated the prediction of significant differences between Stacking

and other ensemble learning schemes. Contrary to expectations, we found that
features derived directly from the dataset were better suited in this case. For
the model which predicts significant differences between Grading and Stacking,
insight into the inner workings of both schemes have enabled us to formulate a
tentative explanation of the learned model.

At last we have found that there is no single best meta classifier for pre-
dicting significant differences – a variety of machine learning algorithms had
to be evaluated for best results. This hints that learning problems which aim
to distinguish between pairs of classifiers have quite different properties, which
could explain why Meta-Learning a single model for many classifiers at once is
so hard. More details can be found in Chapter 4.

9.3 Improving upon Stacking: Stacking with Con-

fidences

We have presented empirical evidence that Stacking in the extension proposed by
(Ting & Witten, 1999) performs worse on multi-class datasets than on two-class
datasets, for all but one meta-learner we investigated. This can be explained as
follows: With a higher number of classes, the dimensionality of the meta-level
data is proportionally increased. This higher dimensionality makes it harder
for meta-learners to find good models, since there are more features to be con-
sidered. Stacking using meta-level data consisting of predictions does not suffer
from this weakness, as would be expected.

In order to improve on the status quo, we have proposed and implemented
a new Stacking variant, StackingC, based on reducing the dimensionality of the
meta dataset so as to be independent of the number of classes and removing
a priori irrelevant features, and shown that it resolves this previously unre-
ported weakness, for MLR and two other related meta-learners considered. We
believe that the source of this improvement lies partially in the dimensionality
reduction, but more importantly in the higher diversity of class models. Using
one-against-all class binarization and regression learners for each class model
seems to be essential. This variant is competitive to other current variants, e.g.
sMM5 by Džeroski and Zenko (2002). More details can be found in Chapter 5.

9.4 Learning Curves

In this chapter, we investigate the hypothesis that StackingC is the most stable
ensemble learning scheme. We define the stability of a learner as its continued
good performance in the face of a reduction in training data, i.e. its capability
to find the best or a reasonably good model when confronted with less train-
ing data, and – in case of insufficient amounts of training data – a graceful
degradation in performance.

In light of evidence presented in this chapter, we cannot support the original
hypothesis that StackingC offers more stable performance than other ensemble
learning schemes. On the contrary, we found almost no significant differences

82

between our ensemble learning schemes and even vs. the best base classifier by
hindsight. On a more positive note, we found that even the simplest scheme
Voting is competitive to the best base classifier by hindsight, even though Voting

does not use the expensive crossvalidation of all other schemes.
On a final note, we believe that stability is a desirable property of classifiers

and may be complementary to classic accuracy estimates. Detailed results can
be found in Chapter 6.

9.5 Towards a Theoretical Framework

Here, we have shown that Stacking is equivalent to most ensemble learning
schemes, namely Selection by Crossvalidation (X-Val), Voting of either class prob-
ability distributions or predictions, and Grading. We have given functional de-
scriptions of suitable meta classifiers for Stacking which simulate the operation
of these ensemble learning schemes. By a simple wrapper we were also able to
simulate Bagging. Recent variants such as StackingC (Seewald, 2002a), see also
Chapter 5 and sMM5 (Džeroski & Zenko, 2002) can also be simulated in the same
way. So Stacking can be seen as conceptual abstraction of all these schemes. Thus
we conclude that our approach offers a unique viewpoint on Stacking which is an
important step towards a theoretical framework for ensemble learning. Detailed
results can be found in Chapter 7.

9.6 Information Visualization

In this chapter, we have introduced Information Visualization, a fairly new field
that deals with visualization of high-dimensional data where no inherent spatial
or temporal structure is present. We have applied methods from this field to
the problem of visualizing datasets (instance space) and also to visualize some
of our experimental results (predition space).

For instance space, we found a significant mismatch of the number of re-
ported and actual classes for two datasets. Also, we found quite some minority
classes with very few instances – in some cases, only one. Furthermore, we
found and identified one synthetic dataset, balance-scale, via its strikingly reg-
ular pattern.

For prediction space, we found that the two most frequent groups of instances
are first those where all base classifiers and StackingC are correct and then those
where all base classifiers and StackingC are wrong in their predictions. While
some cases exist where StackingC is able to find the correct class even when none
or a minority of base classifiers are correct, this has to be discounted against its
worse performance in cases where the majority of base classifiers is correct.

Concluding, we have found the field of Information Visualization to be a
valuable addition and inspiration for our research and hope that it will be more
widely applied in the future. However, free research tools for basic visualization
methods are quite hard to find – sadly, sometimes even the code for quite recent
PhDs is not longer available or too old to run on current machines. So we were
forced to reimplement quite some methods from scratch.1 Detailed results can
be found in the Chapter 8

1In our case they are freely available, please contact the author.

83

9.7 Conclusion and Outlook

While we believe that the current variants StackingC (see Chapter 5) and sMM5

are very close to the achievable optimum2, we are disappointed that the compet-
itive advantage over simpler methods such as unweighted Voting is quite small –
and in some comparisons does not exist at all. Given that all Stacking variants
rely on expensive crossvalidation, which makes them at least an order of magni-
tude slower than Voting, this is quite unsatisfactory. Possibly neurophysiological
research will once reveal how the brain is able to work efficiently as a very large
ensemble – as of now, we have exhausted the issue of ensemble learning in the
guise of Stacking quite thoroughly.

We still hope that this thesis stimulates further work in understanding en-
semble learning and applying ensembles in other research areas such as Game
Playing, Self-Diagnosing Systems and BioInformatics. Overall, the concept of
ensembles has been a great inspiration to our work and still remains fruitful.
We also hope that our results concerning parameter choice will help Stacking

to become more visible within and outside the machine learning community,
instead of Neural Networks and Support Vector Machines which are at least as
computationally inefficient and opaque. Finally, we hope that our results from
Information Visualization motivates other researchers to create if not more col-
orful then at least more creative and inspiring figures.

2In fact several experiments concerned with improving performance further, e.g. by com-
bining both current variants, amply demonstrated the law of diminishing returns.

84

Bibliography

Bauer, E., Kohavi, R. (1999): An empirical comparison of voting classification
algorithms: Bagging, boosting, and variants. Machine Learning 36, pages
105-169.

Becker, B., Kohavi, R., Sommerfield, D. (1997): Visualizing the Simple Bayesian
Classifier. In KDD 1997 Workshop on Issues in the Integration of Data Mining
and Data Visualization.

Bensusan, H., Kalouis, A. (2001): Estimating the Predictive Accuracy of a
Classifier. In Proceedings of the twelveth European Conference on Machine
Learning, Freiburg, Germany. Springer Verlag.

Bezdek, J.C., Nikhil, R.P. (1995): An index of topological preservation for
feature extraction. Pattern Recognition, Vol.28, No.3, pages 381-391.

Blake, C. L., Merz, C. J (1998): UCI repository of machine learning
databases. http://www.ics.uci.edu/~mlearn/MLRepository.html (1998).
Department of Information and Computer Science, University of California
at Irvine, Irvine CA.

Borg, I., Groenen, P. (1997): Modern Multidimensional Scaling. Springer-
Verlag, New York.

Brazdil, P. B., Gama, J., & Henery, B. (1994). Characterizing the applicabil-
ity of classification algorithms using meta-level learning. Proceedings of the
7th European Conference on Machine Learning (ECML-94) (pages 83-102),
Catania, Italy, Springer-Verlag.

Breiman, L. (1996): Bagging Predictors. Machine Learning (24), 123-140.

Brodley, C., Lane, T. (1996): Creating and Exploiting Coverage and Diversity.
Integrating Multiple Learning Model Workshop, AAAI-96, Portland, Oregon.

Card, S. K., Mackinlay, J., Shneiderman, B., eds. (1999): Readings in Informa-
tion Visualization: Using Vision to Think. San Francisco, Morgan Kaufmann.

Chan, P. K., & Stolfo, S. J. (1995). A comparative evaluation of voting and meta-
learning on partitioned data. Proceedings of the 12th International Conference
on Machine Learning (ICML-95) (pages 90-98). Morgan Kaufmann.

Cleary, J. G., Trigg, L. E (1995): K*: An instance-based learner using an
entropic distance measure. In Prieditis, A., Russell, S., Proceedings of the 12th
International Conference on Machine Learning, pages 108-114, Lake Tahoe,
CA.

85

Dietterich, T.G. (1998): Approximate Statistical Tests for Comparing Super-
vised Classification Learning Algorithms. Neural Computation, 10 (7), pages
1895-1924.

Dietterich T. G. (2000a): An Experimental Comparison of Three Methods for
Constructing Ensembles of Decision Trees: Bagging, Boosting, and Random-
ization. Machine Learning 40(2), pages 139-158.

Dietterich, T. G. (2000b): Ensemble methods in machine learning. In Kittler, J.,
Roli, F., First International Workshop on Multiple Classifier Systems, pages
1-15. Springer-Verlag.

Džeroski S., Zenko B. (2002): Is Combining Classifiers Better than Selecting the
Best One?, in Proceedings of the 19th International Conference on Machine
Learning, ICML-2002, Morgan Kaufmann Publishers, San Francisco.

Fan, W., Stolfo, J. S., Chan, P. K. (1999): Using Conflicts Among Multiple
Base Classifiers to Measure the Performance of Stacking. In Proceedings of
the ICML-99 Workshop on Recent Advances in Meta-Learning and Future
Work (1999) 66-73. Jozef Stefan Institute, Ljubljana, Slovenia.

Flexer A. (2001): On the use of self-organizing maps for clustering and visual-
ization, Intelligent Data Analysis 5(5), pages 373-384.

Freund, Y., Schapire R.E. (1996): Experiments with a new boosting algorithm,
Proceedings of the International Conference on Machine Learning, pages 148-
156, Morgan Kaufmann, San Francisco.

Fürnkranz J. (2001): Round Robin Rule Learning, in Brodley C.E., Danyluk
A.P., Proceedings of the 18th International Conference on Machine Learning
(ICML-01), Morgan Kaufmann, San Francisco, pages 146-153.

Gama, J. (1999). Discriminant Trees. In Bratko I. & Džeroski S.(eds.), Proceed-
ings of the 16th International Conference on Machine Learning, ICML’99,
pages 134-142. Morgan Kaufmann, Los Altos/Palo Alto/San Francisco.

Gama, J., Brazdil, P. (1995): Characterization of classification algorithms. In
Proceedings of the 7th Portugese Conference in AI, EPIA 95, pages 83-102.

Gama, J.; and Brazdil, P. (1999): Linear Tree. Intelligent Data Analysis 3(1):1-
22.

Gama J., Brazdil P. (2000): Cascade Generalization, Machine Learning 41(3),
pages 315-344.

Hansen, L. K., Salamon, P. (1990): Neural Network Ensembles. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 12:10, pages 993-1001.

Keim, D.A., Kriegel, H-P (1996): Visualization Techniques for Mining Large
Databases: A Comparison. In IEEE Transactions on Knowledge and Data
Engineering, Vol.8, No.6, Dec. 1996.

Kohavi, R. (1996): Scaling Up the Accuracy of Naive-Bayes Classifiers: a
Decision-Tree Hybrid. In Simoudis E. & Han J.(eds.), KDD-96: Proceedings
Second International Conference on Knowledge Discovery & Data Mining,
pages 202-207. AAAI Press/MIT Press, Cambridge/Menlo Park.

86

Kohavi, R., Wolpert, D. (1996): Bias plus variance decomposition for zero-one
loss functions. In Saitta L.(eds.), ICML-96: Proceedings of the Thirteenth
International Machine Learning Conference, Bari, Italy. Morgan Kaufmann,
San Francisco.

Kononenko, I., Bratko, I. (1991): Information-based evaluation criterion for
classifier’s performance. Machine Learning 6, pages 67-80.

Langley, P. (1993): Induction of Recursive Bayesian Classifiers. In
Brazdil P.B.(ed.), Machine Learning: ECML-93, pages 153-164. Springer,
Berlin/Heidelberg/New York/Tokyo.

Merz, C. J. (1999): Using correspondence analysis to combine classifiers, Ma-
chine Learning 36, pages 33-58.

Petrak, J. (2000): Fast subsampling performance estimates for classification al-
gorithm selection. Proceedings of the ECML-00 Workshop on Meta-Learning:
Building Automatic Advice Strategies for Model Selection and Method Com-
bination (pages 3-14). Barcelona, Spain.

Pfahringer, B., Bensusan, H., & Giraud-Carrier, C. (2000): Meta-learning by
landmarking various learning algorithms. Proceedings of the 17th Interna-
tional Conference on Machine Learning (ICML-2000). Stanford, CA.

Quinlan, J.R. (1987): Simplifying Decision Trees. International Journal of Man-
Machine Studies 27:221-234.

Quinlan, J.R. (1992): Learning with Continuous Classes. Proceedings of the
Australian Joint Conference on Artificial Intelligence, pages 343-348. World
Scientific, Singapore.

Quinlan, J. R. (1993a): C4.5: Programs for Machine Learning. Morgan Kauf-
mann, San Mateo, CA.

Quinlan, J. R. (1993b): Comparing Connectionist and Symbolic Learning Meth-
ods: Constraints and Prospects, MIT Press.

Robertson, G., Mackinlay, J., Card, S. (1991): Cone Trees: Animated 3D Visu-
alizations of Hierarchical Information, Proc. CHI’91 Human Factors in Comp.
Systems.

Sammon, J.W. (1969): A nonlinear mapping for data structure analysis. IEEE
Transactions on Computers, C-18:401-409, 1969.

Schaffer, C. (1993): Selecting a classification method by cross-validation. Ma-
chine Learning 13(1), pages 135-143.

Schaffer, C. (1994): Cross-validation, stacking and bi-level stacking: Meta-
methods for classification learning. In P. Cheeseman and R. W. Oldford
(Eds.), Selecting models from data: Artificial Intelligence and Statistics IV,
pages 51-59. Springer-Verlag.

87

Seewald A.K., Fürnkranz J. (2001): An Evaluation of Grading Classifiers, in
Hoffmann F. et al. (eds.), Advances in Intelligent Data Analysis, 4th Interna-
tional Conference, IDA 2001, Proceedings, Springer, Berlin/Heidelberg/New
York/Tokyo, pages 115-124. Also available as Technical Report (extended
version) TR-2001-01, Austrian Research Institute for Artificial Intelligence,
Vienna, Austria. www.oefai.at

Seewald A.K., Petrak J., Widmer G. (2001): Hybrid Decision Tree Learners
with Alternative Leaf Classifiers: An Empirical Study, Proceedings of the
14th International FLAIRS Conference (FLAIRS-2001), AAAI Press, Menlo
Park, California.

Seewald A.K. (2002a): How to make Stacking Better and Faster While Also Tak-
ing Care of an Unknown Weakness, in Proceedings of the 19th International
Conference on Machine Learning, ICML-2002, Morgan Kaufmann Publishers,
San Francisco.

Seewald A.K. (2002b): Meta-Learning for Stacked Classification, in Bohanec M.
et al. (eds.), Second International Workshop on Integration and Collaboration
Aspects of Data Mining, Decision Support and Meta-Learning (IDDM-2002),
University of Helsinki, Department of Computer Science, pages 123-128.

Seewald A.K. (2002c): Exploring the Parameter State Space of Stacking, in Pro-
ceedings of the 2002 IEEE International Conference on Data Mining (ICDM-
2002), Maebashi City, Japan.

Skalak, D. B. (1997): Prototype Selection for Composite Nearest Neighbor
Classifiers. PhD Dissertation, University of Massachusetts, Amherst, Mas-
sachusetts.

Spoerri A. (1995): InfoCrystal - A Visual Tool For Information Retrieval, Ph.D.
Thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts.

Ting, K. M. (1997): Decision combination based on the characterisation of
predictive accuracy. Intelligent Data Analysis, 1, pages 181-206.

Ting, K. M., Witten, I. H. (1999): Issues in stacked generalization. Journal of
Artificial Intelligence Research 10, pages 271-289.

Todorovski, L., & Džeroski, S. (2000): Combining multiple models with meta
decision trees. Proceedings of the 4th European Conference on Principles of
Data Mining and Knowledge Discovery (PKDD-2000) (pages 54-64). Lyon,
France: Springer-Verlag.

Utgoff, P.E. (1988): Perceptron Trees: A Cast Study in Hybrid Concept Repre-
sentations. In Proceedings of the 7th National Conference on Artificial Intelli-
gence, pages 601-605. Morgan Kaufmann, Los Altos/Palo Alto/San Francisco.

Vesanto, J., Himberg, J., Alhoniemi, E., Parhankangas, J. (2000): SOM Tool-
box for Matlab, Helsinki University of Technology, Neural Networks Research
Centre, Espoo, Finland.

88

Wang, Y., Witten, I. H. (1997): Induction of model trees for predicting contin-
uous classes. Proceedings of the poster papers of the European Conference
on Machine Learning. University of Economics, Faculty of Informatics and
Statistics, Prague.

Wolpert, D. H. (1992): Stacked generalization. Neural Networks 5(2), pages
241-260.

89

Appendix A

InfoVis Figures

This appendix shows complete figures of Chapter 8, Information Visualization,
for all twenty-six datasets, each one with instance space and prediction space
visualization. For the sake of completeness, the figures already shown in Chap-
ter 8 are duplicated here in full-page format.

90

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4
audiology sammon−mapping (stress=0.106)

1st Dimension

2n
d

D
im

en
si

on

cochlear age
cochlear unknown
cochlear age and noise
normal ear
cochlear poss noise
mixed cochlear unk fixation
possible menieres
conductive fixation
mixed cochlear age otitis media
otitis media
possible brainstem disorder
mixed cochlear unk ser om
cochlear noise and heredity
conductive discontinuity
mixed cochlear age fixation
mixed cochlear age s om
mixed cochlear unk discontinuity
mixed poss noise om
retrocochlear unknown
acoustic neuroma
bells palsy
cochlear age plus poss menieres
mixed poss central om
poss central

F
ig

u
re

A
.1

:
In

sta
n
ce

sp
a
ce

v
isu

a
liza

tio
n

o
f

a
u
d
io

logy
v
ia

S
a
m

m
o
n
-M

a
p
p
in

g
.

T
h
e

leg
en

d
is

so
rted

b
y

d
escen

d
in

g
freq

u
en

cy,
i.e.

th
e

fi
rst

lin
e

co
rresp

o
n
d
s

to
th

e
m

o
st

freq
u
en

t
cla

ss.
A

s
w

e
ca

n
see

th
ere

a
re

sev
era

l
cla

sses
w

ith
v
ery

few
ex

a
m

p
les.

S
o
m

e
cla

sses
a
re

lo
ca

lly
clu

stered
,
b
u
t

th
is

is
q
u
ite

in
d
istin

ct.

9
1

−
4

−
3

−
2

−
1

0
1

2
3

4
−

4

−
3

−
2

−
101234

au
di

ol
og

y
S

tC
/B

as
e

pr
ed

ic
tio

n
sp

ac
e

1s
t D

im
en

si
on

2nd Dimension

Figure A.2: Prediction space visualization of audiology via Sammon-Mapping
and glyphs. ◦ stands for instances correctly classified by StackingC and • for
incorrectly classified instances. Enclosed in each circle is a glyph which encodes
the complete base classifier performance – for a more detailed explanation refer
to the text.

92

−
4

−
3

−
2

−
1

0
1

2
3

−
3

−
2

−
101234

au
to

s
sa

m
m

on
−

m
ap

pi
ng

 (
st

re
ss

=
0.

09
5)

1s
t D

im
en

si
on

2nd Dimension

0 1 2 3 −
1

−
2

Figure A.3: Instance space visualization of autos via Sammon-Mapping. Class
-3 never appears in the dataset; thus this is in fact a six-class dataset. The
examples are sparsely distributed, but there are some local changes in density.
The high number of two or more examples within small distance which share
the same class is somewhat striking.

93

−
4

−
3

−
2

−
1

0
1

2
3

−
3

−
2

−
101234

au
to

s
S

tC
/B

as
e

pr
ed

ic
tio

n
sp

ac
e

1s
t D

im
en

si
on

2nd Dimension

Figure A.4: Prediction space visualization of autos via Sammon-Mapping and
glyphs. ◦ stands for instances correctly classified by StackingC and • for incor-
rectly classified instances. Enclosed in each circle is a glyph which encodes the
complete base classifier performance – for a more detailed explanation refer to
the text.

94

−
1.

5
−

1
−

0.
5

0
0.

5
1

1.
5

−
1

−
0.

8

−
0.

6

−
0.

4

−
0.

20

0.
2

0.
4

0.
6

0.
81

ba
la

nc
e−

sc
al

e
sa

m
m

on
−

m
ap

pi
ng

 (
st

re
ss

=
0.

09
3)

1s
t D

im
en

si
on

2nd Dimension

L R B

Figure A.5: Instance space visualization of balance-scale via Sammon-Mapping.
The regular structure of this visualization is striking. We found out that this is
due to the fact that the input is exhaustive: for all four variables, all values from
zero to one in steps on 0.25 appear. This is actually a synthetic dataset, with a
non-linear perfect model and thus of questionable use in empirical experiments.
Adding appropriate attributes makes the problem trivial to solve.

95

−
1.

5
−

1
−

0.
5

0
0.

5
1

1.
5

−
1.

5

−
1

−
0.

50

0.
51

1.
5

ba
la

nc
e−

sc
al

e
S

tC
/B

as
e

pr
ed

ic
tio

n
sp

ac
e

1s
t D

im
en

si
on

2nd Dimension

Figure A.6: Prediction space visualization of balance-scale via Sammon-
Mapping and glyphs. ◦ stands for instances correctly classified by StackingC

and • for incorrectly classified instances. Enclosed in each circle is a glyph
which encodes the complete base classifier performance – for a more detailed
explanation refer to the text.

96

−
3

−
2

−
1

0
1

2
3

−
3

−
2

−
10123

br
ea

st
−

ca
nc

er
 s

am
m

on
−

m
ap

pi
ng

 (
st

re
ss

=
0.

12
3)

1s
t D

im
en

si
on

2nd Dimension

no
−

re
cu

rr
en

ce
−

ev
en

ts
re

cu
rr

en
ce

−
ev

en
ts

Figure A.7: Instance space visualization of breast-cancer via Sammon-Mapping.
The examples appear quite sparse, but not completely uniformly randomly dis-
tributed. Some empty spaces between examples strike us as interesting.

97

−
3

−
2

−
1

0
1

2
3

−
3

−
2

−
10123

br
ea

st
−

ca
nc

er
 S

tC
/B

as
e

pr
ed

ic
tio

n
sp

ac
e

1s
t D

im
en

si
on

2nd Dimension

Figure A.8: Prediction space visualization of breast-cancer via Sammon-
Mapping and glyphs. ◦ stands for instances correctly classified by StackingC

and • for incorrectly classified instances. Enclosed in each circle is a glyph
which encodes the complete base classifier performance – for a more detailed
explanation refer to the text.

98

−
2

−
1.

5
−

1
−

0.
5

0
0.

5
1

−
2.

5

−
2

−
1.

5

−
1

−
0.

50

0.
51

1.
5

br
ea

st
−

w
 s

am
m

on
−

m
ap

pi
ng

 (
st

re
ss

=
0.

02
6)

1s
t D

im
en

si
on

2nd Dimension

be
ni

gn
m

al
ig

na
nt

Figure A.9: Instance space visualization of breast-w via Sammon-Mapping. A
cluster of benign examples, surrounded by mostly malginant examples is clearly
visible. The stress value for this visualization is also quite small – values around
0.1 are usually observed.

99

−
2

−
1.

5
−

1
−

0.
5

0
0.

5
1

−
2.

5

−
2

−
1.

5

−
1

−
0.

50

0.
51

1.
5

br
ea

st
−

w
 S

tC
/B

as
e

pr
ed

ic
tio

n
sp

ac
e

1s
t D

im
en

si
on

2nd Dimension

Figure A.10: Prediction space visualization of breast-w via Sammon-Mapping
and glyphs. ◦ stands for instances correctly classified by StackingC and • for
incorrectly classified instances. Enclosed in each circle is a glyph which encodes
the complete base classifier performance – for a more detailed explanation refer
to the text.

100

−
4

−
3

−
2

−
1

0
1

2
3

4
−

4

−
3

−
2

−
101234

co
lic

 s
am

m
on

−
m

ap
pi

ng
 (

st
re

ss
=

0.
12

5)

1s
t D

im
en

si
on

2nd Dimension

ye
s

no

Figure A.11: Instance space visualization of colic via Sammon-Mapping. To-
wards negative values on the 1st dimension axis, a higher proportion of class no
is observed. Apart from that, the distribution seems quite uniformly random.

101

−
4

−
3

−
2

−
1

0
1

2
3

4
−

5

−
4

−
3

−
2

−
101234

co
lic

 S
tC

/B
as

e
pr

ed
ic

tio
n

sp
ac

e

1s
t D

im
en

si
on

2nd Dimension

Figure A.12: Prediction space visualization of colic via Sammon-Mapping and
glyphs. ◦ stands for instances correctly classified by StackingC and • for incor-
rectly classified instances. Enclosed in each circle is a glyph which encodes the
complete base classifier performance – for a more detailed explanation refer to
the text.

102

−
3

−
2

−
1

0
1

2
3

−
3

−
2

−
101234

cr
ed

it−
a

sa
m

m
on

−
m

ap
pi

ng
 (

st
re

ss
=

0.
11

1)

1s
t D

im
en

si
on

2nd Dimension

m
in

us
pl

us

Figure A.13: Instance space visualization of credit-a via Sammon-Mapping.
Some clusters with different proportions of plus and minus can be observed,
with wide gaps between them. However, stress is still quite high, so this is of
unclear significance.

103

−
3

−
2

−
1

0
1

2
3

−
3

−
2

−
101234

cr
ed

it−
a

S
tC

/B
as

e
pr

ed
ic

tio
n

sp
ac

e

1s
t D

im
en

si
on

2nd Dimension

Figure A.14: Prediction space visualization of credit-a via Sammon-Mapping
and glyphs. ◦ stands for instances correctly classified by StackingC and • for
incorrectly classified instances. Enclosed in each circle is a glyph which encodes
the complete base classifier performance – for a more detailed explanation refer
to the text.

104

−
8

−
6

−
4

−
2

0
2

4
6

−
6

−
4

−
20246

cr
ed

it−
g

sa
m

m
on

−
m

ap
pi

ng
 (

st
re

ss
=

0.
18

)

1s
t D

im
en

si
on

2nd Dimension

go
od

ba
d

Figure A.15: Instance space visualization of credit-g via Sammon-Mapping.
No observable clusters are visible, the examples are quite uniformly randomly
distributed in a circle around the origin as would normally be expected only
from random data.

105

−
8

−
6

−
4

−
2

0
2

4
6

−
6

−
4

−
20246

cr
ed

it−
g

S
tC

/B
as

e
pr

ed
ic

tio
n

sp
ac

e

1s
t D

im
en

si
on

2nd Dimension

Figure A.16: Prediction space visualization of credit-g via Sammon-Mapping
and glyphs. ◦ stands for instances correctly classified by StackingC and • for
incorrectly classified instances. Enclosed in each circle is a glyph which encodes
the complete base classifier performance – for a more detailed explanation refer
to the text.

106

−
1

−
0.

5
0

0.
5

1
1.

5
−

1

−
0.

8

−
0.

6

−
0.

4

−
0.

20

0.
2

0.
4

0.
6

0.
81

di
ab

et
es

 s
am

m
on

−
m

ap
pi

ng
 (

st
re

ss
=

0.
05

8)

1s
t D

im
en

si
on

2nd Dimension

te
st

ed
 n

eg
at

iv
e

te
st

ed
 p

os
iti

ve

Figure A.17: Instance space visualization of diabetes via Sammon-Mapping.
Some structure in the example distribution is observed. It seems that there are
slightly more tested positive examples towards the negative 2nd dimension.

107

−
1

−
0.

5
0

0.
5

1
1.

5
−

1

−
0.

8

−
0.

6

−
0.

4

−
0.

20

0.
2

0.
4

0.
6

0.
81

di
ab

et
es

 S
tC

/B
as

e
pr

ed
ic

tio
n

sp
ac

e

1s
t D

im
en

si
on

2nd Dimension

Figure A.18: Prediction space visualization of diabetes via Sammon-Mapping
and glyphs. ◦ stands for instances correctly classified by StackingC and • for
incorrectly classified instances. Enclosed in each circle is a glyph which encodes
the complete base classifier performance – for a more detailed explanation refer
to the text.

108

−
1.

2
−

1
−

0.
8

−
0.

6
−

0.
4

−
0.

2
0

0.
2

0.
4

0.
6

0.
8

−
1.

5

−
1

−
0.

50

0.
51

gl
as

s
sa

m
m

on
−

m
ap

pi
ng

 (
st

re
ss

=
0.

03
9)

1s
t D

im
en

si
on

2nd Dimension

bu
ild

 w
in

d
no

n−
flo

at
bu

ild
 w

in
d

flo
at

he
ad

la
m

ps
ve

hi
c

w
in

d
flo

at
co

nt
ai

ne
rs

ta
bl

ew
ar

e

Figure A.19: Instance space visualization of glass via Sammon-Mapping. The
examples are very non-uniformly distributed. There is one cluster, headlamps;
all the others overlap to a lesser or greater degree. One class does not appear
in the dataset.

109

−
1.

2
−

1
−

0.
8

−
0.

6
−

0.
4

−
0.

2
0

0.
2

0.
4

0.
6

0.
8

−
1.

5

−
1

−
0.

50

0.
51

gl
as

s
S

tC
/B

as
e

pr
ed

ic
tio

n
sp

ac
e

1s
t D

im
en

si
on

2nd Dimension

Figure A.20: Prediction space visualization of glass via Sammon-Mapping and
glyphs. ◦ stands for instances correctly classified by StackingC and • for incor-
rectly classified instances. Enclosed in each circle is a glyph which encodes the
complete base classifier performance – for a more detailed explanation refer to
the text.

110

−
2.

5
−

2
−

1.
5

−
1

−
0.

5
0

0.
5

1
1.

5
2

2.
5

−
3

−
2

−
10123

he
ar

t−
c

sa
m

m
on

−
m

ap
pi

ng
 (

st
re

ss
=

0.
09

8)

1s
t D

im
en

si
on

2nd Dimension

<
50

>
50

 1

Figure A.21: Instance space visualization of heart-c via Sammon-Mapping. To-
wards the negative 1st dimension, more > 50 1 examples can be found. Some
structure seems to be present in the distribution of examples. What is more
striking, however, is that this dataset has five class values in the header, but
only two of the classes are really used in the examples!

111

−
3

−
2

−
1

0
1

2
3

−
3

−
2

−
10123

he
ar

t−
c

S
tC

/B
as

e
pr

ed
ic

tio
n

sp
ac

e

1s
t D

im
en

si
on

2nd Dimension

Figure A.22: Prediction space visualization of heart-c via Sammon-Mapping
and glyphs. ◦ stands for instances correctly classified by StackingC and • for
incorrectly classified instances. Enclosed in each circle is a glyph which encodes
the complete base classifier performance – for a more detailed explanation refer
to the text.

112

−
2.

5
−

2
−

1.
5

−
1

−
0.

5
0

0.
5

1
1.

5
2

2.
5

−
2.

5

−
2

−
1.

5

−
1

−
0.

50

0.
51

1.
52

he
ar

t−
h

sa
m

m
on

−
m

ap
pi

ng
 (

st
re

ss
=

0.
07

2)

1s
t D

im
en

si
on

2nd Dimension

<
50

>
50

 1

Figure A.23: Instance space visualization of heart-h via Sammon-Mapping.
There are some clusters with different proportions of < 50 and > 50 1, but
most of the data seems randomly distributed. Towards the positive 1st dimen-
sion, more > 50 1 examples can be found. However, again this is a supposedly
five-class dataset where only two classes are used in the examples.

113

−
2.

5
−

2
−

1.
5

−
1

−
0.

5
0

0.
5

1
1.

5
2

2.
5

−
2.

5

−
2

−
1.

5

−
1

−
0.

50

0.
51

1.
52

he
ar

t−
h

S
tC

/B
as

e
pr

ed
ic

tio
n

sp
ac

e

1s
t D

im
en

si
on

2nd Dimension

Figure A.24: Prediction space visualization of heart-h via Sammon-Mapping
and glyphs. ◦ stands for instances correctly classified by StackingC and • for
incorrectly classified instances. Enclosed in each circle is a glyph which encodes
the complete base classifier performance – for a more detailed explanation refer
to the text.

114

−
2

−
1.

5
−

1
−

0.
5

0
0.

5
1

1.
5

2
−

2

−
1.

5

−
1

−
0.

50

0.
51

1.
52

he
ar

t−
st

at
lo

g
sa

m
m

on
−

m
ap

pi
ng

 (
st

re
ss

=
0.

08
5)

1s
t D

im
en

si
on

2nd Dimension

ab
se

nt
pr

es
en

t

Figure A.25: Instance space visualization of heart-statlog via Sammon-Mapping.
Some interesting structure seems to be present in the distribution of examples.

115

−
2

−
1.

5
−

1
−

0.
5

0
0.

5
1

1.
5

2
−

2

−
1.

5

−
1

−
0.

50

0.
51

1.
52

he
ar

t−
st

at
lo

g
S

tC
/B

as
e

pr
ed

ic
tio

n
sp

ac
e

1s
t D

im
en

si
on

2nd Dimension

Figure A.26: Prediction space visualization of heart-statlog via Sammon-
Mapping and glyphs. ◦ stands for instances correctly classified by StackingC

and • for incorrectly classified instances. Enclosed in each circle is a glyph
which encodes the complete base classifier performance – for a more detailed
explanation refer to the text.

116

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
hepatitis sammon−mapping (stress=0.092)

1st Dimension

2n
d

D
im

en
si

on

LIVE
DIE

F
ig

u
re

A
.2

7
:

In
sta

n
ce

sp
a
ce

v
isu

a
liza

tio
n

o
f

h
epa

titis
v
ia

S
a
m

m
o
n
-M

a
p
p
in

g
.

T
h
is

d
a
ta

set
seem

s
q
u
ite

sp
a
rse.

1
1
7

−
2.

5
−

2
−

1.
5

−
1

−
0.

5
0

0.
5

1
1.

5
2

2.
5

−
2.

5

−
2

−
1.

5

−
1

−
0.

50

0.
51

1.
52

2.
5

he
pa

tit
is

 S
tC

/B
as

e
pr

ed
ic

tio
n

sp
ac

e

1s
t D

im
en

si
on

2nd Dimension

Figure A.28: Prediction space visualization of hepatitis via Sammon-Mapping
and glyphs. ◦ stands for instances correctly classified by StackingC and • for
incorrectly classified instances. Enclosed in each circle is a glyph which encodes
the complete base classifier performance – for a more detailed explanation refer
to the text.

118

−
3

−
2

−
1

0
1

2
3

−
3

−
2

−
10123

io
no

sp
he

re
 s

am
m

on
−

m
ap

pi
ng

 (
st

re
ss

=
0.

05
3)

1s
t D

im
en

si
on

2nd Dimension

g b

Figure A.29: Instance space visualization of ionosphere via Sammon-Mapping.
Some interesting structure seems to be present in the distribution of examples.

119

−
3

−
2

−
1

0
1

2
3

−
3

−
2

−
101234

io
no

sp
he

re
 S

tC
/B

as
e

pr
ed

ic
tio

n
sp

ac
e

1s
t D

im
en

si
on

2nd Dimension

Figure A.30: Prediction space visualization of ionosphere via Sammon-Mapping
and glyphs. ◦ stands for instances correctly classified by StackingC and • for
incorrectly classified instances. Enclosed in each circle is a glyph which encodes
the complete base classifier performance – for a more detailed explanation refer
to the text.

120

−
1

−
0.

8
−

0.
6

−
0.

4
−

0.
2

0
0.

2
0.

4
0.

6
0.

8
−

0.
8

−
0.

6

−
0.

4

−
0.

20

0.
2

0.
4

0.
6

0.
8

iri
s

sa
m

m
on

−
m

ap
pi

ng
 (

st
re

ss
=

0.
01

1)

1s
t D

im
en

si
on

2nd Dimension

Ir
is

−
se

to
sa

Ir
is

−
ve

rs
ic

ol
or

Ir
is

−
vi

rg
in

ic
a

Figure A.31: Instance space visualization of iris via Sammon-Mapping. The
clusters are almost perfect and are able to differentiate the classes – without
relying on previous class information.

121

−
1

−
0.

8
−

0.
6

−
0.

4
−

0.
2

0
0.

2
0.

4
0.

6
0.

8
1

−
1

−
0.

8

−
0.

6

−
0.

4

−
0.

20

0.
2

0.
4

0.
6

0.
81

iri
s

S
tC

/B
as

e
pr

ed
ic

tio
n

sp
ac

e

1s
t D

im
en

si
on

2nd Dimension

Figure A.32: Prediction space visualization of iris via Sammon-Mapping and
glyphs. ◦ stands for instances correctly classified by StackingC and • for incor-
rectly classified instances. Enclosed in each circle is a glyph which encodes the
complete base classifier performance – for a more detailed explanation refer to
the text.

122

−
3

−
2

−
1

0
1

2
3

−
3

−
2

−
10123

la
bo

r
sa

m
m

on
−

m
ap

pi
ng

 (
st

re
ss

=
0.

09
2)

1s
t D

im
en

si
on

2nd Dimension

go
od

ba
d

Figure A.33: Instance space visualization of labor via Sammon-Mapping. The
examples are very sparse – in fact, this is our smallest dataset.

123

−
3

−
2

−
1

0
1

2
3

−
3

−
2

−
10123

la
bo

r
S

tC
/B

as
e

pr
ed

ic
tio

n
sp

ac
e

1s
t D

im
en

si
on

2nd Dimension

Figure A.34: Prediction space visualization of labor via Sammon-Mapping and
glyphs. ◦ stands for instances correctly classified by StackingC and • for incor-
rectly classified instances. Enclosed in each circle is a glyph which encodes the
complete base classifier performance – for a more detailed explanation refer to
the text.

124

−
4

−
3

−
2

−
1

0
1

2
3

4
−

4

−
3

−
2

−
101234

ly
m

ph
 s

am
m

on
−

m
ap

pi
ng

 (
st

re
ss

=
0.

12
)

1s
t D

im
en

si
on

2nd Dimension

m
et

as
ta

se
s

m
al

ig
n

ly
m

ph
fib

ro
si

s
no

rm
al

Figure A.35: Instance space visualization of lymph via Sammon-Mapping. This
dataset is also quite sparse. Notice that the classes normal and fibrosis have
only two resp. 4 examples. This is clearly insufficient data for any kind of
meaningful learning.

125

−
4

−
3

−
2

−
1

0
1

2
3

4
−

4

−
3

−
2

−
101234

ly
m

ph
 S

tC
/B

as
e

pr
ed

ic
tio

n
sp

ac
e

1s
t D

im
en

si
on

2nd Dimension

Figure A.36: Prediction space visualization of lymph via Sammon-Mapping and
glyphs. ◦ stands for instances correctly classified by StackingC and • for incor-
rectly classified instances. Enclosed in each circle is a glyph which encodes the
complete base classifier performance – for a more detailed explanation refer to
the text.

126

−
3

−
2

−
1

0
1

2
3

−
3

−
2

−
10123

pr
im

ar
y−

tu
m

or
 s

am
m

on
−

m
ap

pi
ng

 (
st

re
ss

=
0.

11
3)

1s
t D

im
en

si
on

2nd Dimension

lu
ng

st
om

ac
h

ov
ar

y
pa

nc
re

as
ki

dn
ey

br
ea

st
he

ad
 a

nd
 n

ec
k

ga
llb

la
dd

er
th

yr
oi

d
co

lo
n

pr
os

ta
te

es
op

ha
gu

s
liv

er
re

ct
um

co
rp

us
 u

te
ri

sa
liv

ar
y

gl
an

ds
bl

ad
de

r
ce

rv
ix

 u
te

ri
du

od
en

 a
nd

 s
m

.in
t

te
st

is
va

gi
na

Figure A.37: Instance space visualization of primary-tumor via Sammon-
Mapping. The visualization seems quite confusing and colorful, because of the
twenty-four different classes. One of these classes does not even appear in the
full dataset. Only one example is present for the three least-frequent classes;
two are present for the next three and six for corpus uteri. Learning requires
at least one training example, two are the absolute minimum. Notice also that
some of the classes seem related, e.g. corpus uteri and cervix uteri, which may
be exploited by recoding the class values.

127

−
3

−
2

−
1

0
1

2
3

−
3

−
2

−
10123

pr
im

ar
y−

tu
m

or
 S

tC
/B

as
e

pr
ed

ic
tio

n
sp

ac
e

1s
t D

im
en

si
on

2nd Dimension

Figure A.38: Prediction space visualization of primary-tumor via Sammon-
Mapping and glyphs. ◦ stands for instances correctly classified by StackingC

and • for incorrectly classified instances. Enclosed in each circle is a glyph
which encodes the complete base classifier performance – for a more detailed
explanation refer to the text.

128

−
1.

5
−

1
−

0.
5

0
0.

5
1

1.
5

−
1.

5

−
1

−
0.

50

0.
51

1.
52

se
gm

en
t s

am
m

on
−

m
ap

pi
ng

 (
st

re
ss

=
0.

03
8)

1s
t D

im
en

si
on

2nd Dimension

br
ic

kf
ac

e
sk

y
fo

lia
ge

ce
m

en
t

w
in

do
w

pa
th

gr
as

s

Figure A.39: Instance space visualization of segment via Sammon-Mapping.
Two classes, sky and grass, are clearly visible clusters; the others are mixed
together.

129

−
1.

5
−

1
−

0.
5

0
0.

5
1

1.
5

−
1.

5

−
1

−
0.

50

0.
51

1.
52

se
gm

en
t S

tC
/B

as
e

pr
ed

ic
tio

n
sp

ac
e

1s
t D

im
en

si
on

2nd Dimension

Figure A.40: Prediction space visualization of segment via Sammon-Mapping
and glyphs. ◦ stands for instances correctly classified by StackingC and • for
incorrectly classified instances. Enclosed in each circle is a glyph which encodes
the complete base classifier performance – for a more detailed explanation refer
to the text.

130

−
2

−
1.

5
−

1
−

0.
5

0
0.

5
1

1.
5

2
2.

5
3

−
3

−
2

−
10123

so
na

r
sa

m
m

on
−

m
ap

pi
ng

 (
st

re
ss

=
0.

08
3)

1s
t D

im
en

si
on

2nd Dimension

M
in

e
R

oc
k

Figure A.41: Instance space visualization of sonar via Sammon-Mapping. The
examples seem very sparse and almost randomly distributed.

131

−
2

−
1.

5
−

1
−

0.
5

0
0.

5
1

1.
5

2
2.

5
3

−
4

−
3

−
2

−
10123

so
na

r
S

tC
/B

as
e

pr
ed

ic
tio

n
sp

ac
e

1s
t D

im
en

si
on

2nd Dimension

Figure A.42: Prediction space visualization of sonar via Sammon-Mapping and
glyphs. ◦ stands for instances correctly classified by StackingC and • for incor-
rectly classified instances. Enclosed in each circle is a glyph which encodes the
complete base classifier performance – for a more detailed explanation refer to
the text.

132

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5
soybean sammon−mapping (stress=0.12)

1st Dimension

2n
d

D
im

en
si

on

brown−spot
alternarialeaf−spot
frog−eye−leaf−spot
phytophthora−rot
brown−stem−rot
anthracnose
diaporthe−stem−canker
charcoal−rot
rhizoctonia−root−rot
powdery−mildew
downy−mildew
bacterial−blight
bacterial−pustule
purple−seed−stain
phyllosticta−leaf−spot
2−4−d−injury
diaporthe−pod−&−stem−blight
cyst−nematode
herbicide−injury

F
ig

u
re

A
.4

3
:

In
sta

n
ce

sp
a
ce

v
isu

a
liza

tio
n

o
f
so

ybea
n

v
ia

S
a
m

m
o
n
-M

a
p
p
in

g
.

F
o
r

m
o
st

cla
sses,

g
o
o
d

clu
sters

a
re

v
isib

le.
A

lso
,
th

e
fo

rm
o
f
th

e
clu

sters
w

a
s

v
ery

strik
in

g
.

T
h
e

stress
is

still
q
u
ite

h
ig

h
,
b
u
t

a
v
isu

a
liza

tio
n

in
h
ig

h
er

d
im

en
sio

n
s

co
u
ld

p
o
ssib

ly
a
d
d

so
m

e
in

sig
h
t.

1
3
3

−
5

−
4

−
3

−
2

−
1

0
1

2
3

4
5

−
5

−
4

−
3

−
2

−
1012345

so
yb

ea
n

S
tC

/B
as

e
pr

ed
ic

tio
n

sp
ac

e

1s
t D

im
en

si
on

2nd Dimension

Figure A.44: Prediction space visualization of soybean via Sammon-Mapping
and glyphs. ◦ stands for instances correctly classified by StackingC and • for
incorrectly classified instances. Enclosed in each circle is a glyph which encodes
the complete base classifier performance – for a more detailed explanation refer
to the text.

134

−
1.

5
−

1
−

0.
5

0
0.

5
1

1.
5

2
−

2

−
1.

5

−
1

−
0.

50

0.
51

1.
52

ve
hi

cl
e

sa
m

m
on

−
m

ap
pi

ng
 (

st
re

ss
=

0.
03

4)

1s
t D

im
en

si
on

2nd Dimension

bu
s

sa
ab

op
el

va
n

Figure A.45: Instance space visualization of vehicle via Sammon-Mapping.
Some interesting structure is present in the distribution of examples; however,
no meaningful clusters can be discerned.

135

−
1.

5
−

1
−

0.
5

0
0.

5
1

1.
5

2
−

2

−
1.

5

−
1

−
0.

50

0.
51

1.
52

ve
hi

cl
e

S
tC

/B
as

e
pr

ed
ic

tio
n

sp
ac

e

1s
t D

im
en

si
on

2nd Dimension

Figure A.46: Prediction space visualization of vehicle via Sammon-Mapping
and glyphs. ◦ stands for instances correctly classified by StackingC and • for
incorrectly classified instances. Enclosed in each circle is a glyph which encodes
the complete base classifier performance – for a more detailed explanation refer
to the text.

136

−
2.

5
−

2
−

1.
5

−
1

−
0.

5
0

0.
5

1
1.

5
2

2.
5

−
3

−
2

−
10123

vo
te

 s
am

m
on

−
m

ap
pi

ng
 (

st
re

ss
=

0.
07

5)

1s
t D

im
en

si
on

2nd Dimension

de
m

oc
ra

t
re

pu
bl

ic
an

Figure A.47: Instance space visualization of vote via Sammon-Mapping. To-
wards minus the 2nd dimension, a higher proportion of republican voters can
be observed. Apart from that, the distribution seems quite uniformly random
in a circle around the origin.

137

−
2.

5
−

2
−

1.
5

−
1

−
0.

5
0

0.
5

1
1.

5
2

2.
5

−
3

−
2

−
10123

vo
te

 S
tC

/B
as

e
pr

ed
ic

tio
n

sp
ac

e

1s
t D

im
en

si
on

2nd Dimension

Figure A.48: Prediction space visualization of vote via Sammon-Mapping and
glyphs. ◦ stands for instances correctly classified by StackingC and • for incor-
rectly classified instances. Enclosed in each circle is a glyph which encodes the
complete base classifier performance – for a more detailed explanation refer to
the text.

138

−
2

−
1.

5
−

1
−

0.
5

0
0.

5
1

1.
5

2
−

2

−
1.

5

−
1

−
0.

50

0.
51

1.
52

vo
w

el
 s

am
m

on
−

m
ap

pi
ng

 (
st

re
ss

=
0.

10
3)

1s
t D

im
en

si
on

2nd Dimension

hi
d

hI
d

hE
d

hA
d

hY
d

ha
d

hO
d

ho
d

hU
d

hu
d

he
d

Figure A.49: Instance space visualization of vowel via Sammon-Mapping. The
clusters are not related to the classes in this case, but correspond to the fifteen
different speakers.

139

−
2

−
1.

5
−

1
−

0.
5

0
0.

5
1

1.
5

2
−

2

−
1.

5

−
1

−
0.

50

0.
51

1.
52

vo
w

el
 S

tC
/B

as
e

pr
ed

ic
tio

n
sp

ac
e

1s
t D

im
en

si
on

2nd Dimension

Figure A.50: Prediction space visualization of vowel via Sammon-Mapping and
glyphs. ◦ stands for instances correctly classified by StackingC and • for incor-
rectly classified instances. Enclosed in each circle is a glyph which encodes the
complete base classifier performance – for a more detailed explanation refer to
the text.

140

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
zoo sammon−mapping (stress=0.092)

1st Dimension

2n
d

D
im

en
si

on

mammal
bird
fish
invertebrate
insect
reptile
amphibian

F
ig

u
re

A
.5

1
:

In
sta

n
ce

sp
a
ce

v
isu

a
liza

tio
n

o
f
zoo

v
ia

S
a
m

m
o
n
-M

a
p
p
in

g
.

T
h
is

is
a

v
ery

sp
a
rse

d
a
ta

set
–

th
e

seco
n
d
-sm

a
llest

o
n
e

–
h
ow

ev
er

th
e

clu
sters

a
re

q
u
ite

g
o
o
d
.

1
4
1

−
2.

5
−

2
−

1.
5

−
1

−
0.

5
0

0.
5

1
1.

5
2

2.
5

−
3

−
2

−
10123

zo
o

S
tC

/B
as

e
pr

ed
ic

tio
n

sp
ac

e

1s
t D

im
en

si
on

2nd Dimension

Figure A.52: Prediction space visualization of zoo via Sammon-Mapping and
glyphs. ◦ stands for instances correctly classified by StackingC and • for incor-
rectly classified instances. Enclosed in each circle is a glyph which encodes the
complete base classifier performance – for a more detailed explanation refer to
the text.

142

Appendix B

Curriculum Vitae

This curriculum vitae is a selection of relevant entries. A more up-to-date list
can be found at http://www.oefai.at/~alexsee/cv.html or on my private
homepage, http://alex.seewald.at

B.1 Biographical data

• Full Name: Alexander K. Seewald.

• Born 8th December of 1975 in Vienna, Austria.

• Languages: proficient in German and English, basic knowledge of French.

B.2 Professional Career

• 1995-1996: Occupation as computer technician, troubleshooter and system
administrator (SINIX 4.51) at Heinze

• Oct 1996-Jan 1997: Occupation as tutor at the Institute for Computer
languages (basic programming course on Prolog)

• Jul 1997-Sep 1997: Summer job as computer technician at Teuber & Co

• Oct 1998-Sep 1999: Zivildienst (substitute for obligatory civil service) at
the Österreichische Jungarbeiterbewegung, working as systems and ap-
plications administrator for NT/Win98-Network, implementing internal
intranet-applications using MS Internet Information Server

• 2002: Data conversion from legacy systems for financial integration into a
n AS/400 system using DKS, following the merger of Tarbuk with BLM
(customer: Tarbuk)

B.3 Education & Scientific Career

• 1982-1986: Primary school (Volksschule) in Vienna

• 1986-1994: Secondary school (Gymnasium) at BRG Schmelz, Vienna

143

• June 1994: Graduation (Matura) at BRG Schmelz with highest distinction
in mathematics, german, english and computer science (Fachbereichsar-
beit on comparison of operating systems)

• Oct 1994: Enrollment in Computer Science (Informatik) at the Vienna
University of Technology (TU Wien)

• Oct 1996-Jan 1997: Occupation as tutor at the Institute for Computer
languages (Prolog LU)

• Mar 1997: 1. Diplomprüfung (B.Sc.) in Computer Science

• Oct 1999: Graduation as Diplomingenieur (M.Sc.) in Computer Science
with the thesis A mobile robot toy cat controlled by Vision and Motivation

• Feb 2000: Employed as researcher at the Machine Learning Group at
OeFAI for a two-year research project in Data Mining (KDD), A New
Modular Architecture for Data Mining, funded by the FWF (Austrian
research fund for basic research)

• Jan-Aug 2002: Employed by OeFAI as principal researcher for the EU IST
project 3DSearch (applied research with the Austrian company uma.information
technology)

• Jan 2003-Dec 2004: Employed by OeFAI as secondary researcher for the
three year EU project BioMinT (applied research on text mining for large
proteomics databases)

B.4 Publications

See Bibliography.

B.5 Awards and stipends

• May 1991: EDV-Jugendpreis der Stadt Wien (award for innovative com-
puter programs written by students in secondary school, granted by the
city of Vienna)

• May 1992: Participation in the 23. Österreichische Mathematik-Olympiade,
qualification for Gebietswettbewerb für Fortgeschrittene (competition fo-
cussing on creative solutions to mathematical problems)

• 1994: White rose from the Bundesrealgymnasium Schmelz for excellent
performance during secondary school.

• 1996, 1997, 1998, 1999: Leistungsstipendium der Technisch-Naturwissenschaftlichen
Fakultät (yearly stipend for excellent performance as student granted by
TNF of Vienna University of Technology)

• 2002: $1000 Student travel stipend for visiting the ICML 2002 conference,
presenting (Seewald, 2002a)

144

