
Lambda Pruning:
An Approximation of the String Subsequence

Kernel

Alexander K. Seewald1 and Florian Kleedorfer2

1 GE Money Bank, CRM/Analytics
Donau-City Straße 6, A-1220 Vienna, Austria

alex@seewald.at
2 Research Studios Austria, Smart Agent Technologies

Hasnerstraße 123, A-1160 Vienna, Austria
florian.kleedorfer@{researchstudio.at,austria.fm}

Abstract. The Support Vector Machine is a powerful learning algo-
rithm which is known to work well for a variety of learning tasks. Ker-
nels for complex data structures such as strings, lists, trees and general
graphs have been developed. However, some of these kernels are of high
computational complexity and are therefore not widely used. Even rela-
tively efficient kernels may take a lot of patience to run on real-life data.
We advance the state of the art for a specific kernel defined on a complex
data structure, the Subsequence String Kernel (SSK) due to [9], in two
ways: Firstly, by introducing an approximation technique for the SSK
called Lambda Pruning (SSK-LP), which is able to reduce memory con-
sumption and runtime by up to several orders of magnitude with little
loss in accuracy. Secondly, by creating an average case time and worst
case space complexity model for both SSK and SSK-LP. Estimations
of runtime and memory requirements for a specific learning task can
be directly computed from average string length and desired parameter
settings. This combined approach has allowed us to run learning tasks
which would be infeasible with the non-approximated SSK. Memory con-
sumption for SSK-LP is constant and does not depend on string length.
Models based on SSK and SSK-LP perform similarily for a set of real-life
learning tasks.

1 Introduction

Historically, the perceptron classifier was one of the first linear learning machines,
and although the famous paper [10], which showed that it cannot learn non-linear
discriminant models (such as the XOR problem), had an adverse effect on its
development, the perceptron classifier can be seen as ancestor of both Neural
networks and Support Vector machines.

In both cases, a solution to solve non-linear problems is introduced: for Neural
network, by combining layers of perceptrons with the back-propagation learning
rule; for SVMs, by regularizing the linear problem so that it has a unique solution

(i.e. the maximum margin hyperplane) and by blowing up the dimensionality of
the original space to improve linear separability.

Support Vector machines improve upon the perceptron by not only having
one well-defined global optimum in concept space, but also proven convergence
towards this optimum. Neural networks have many local optima, and as for the
perceptron convergence is not assured.

Additionally, the kernel trick, of which we will hear more later, allows to
uncouple the training method from the data, and thus allows the SVM to pro-
cess not only numeric data, or data which has been appropriately transformed
into numeric format, but also character sequences, trees, lists, graphs and other
complex data structures directly (see [6] and [2] for two general approaches to
build such kernels). This is a unique capability which few other classifiers share3.
However, efficiency is an issue with non-standard kernels and experiments can
take a long time and even more memory.

We tackled these issues from two directions, beginning with one well-developed
kernel, the Subsequence String Kernel (SSK, [9]).

– By introducing an approximation to the SSK, SSK-LP, which takes far less
memory than SSK and is usually several orders of magnitude faster.

– By creating average runtime and maximum memory consumption models
for both variants. These models can be applied prior to experimentation,
and compute expected runtime and memory consumption for a single ker-
nel evaluation. As kernel evaluation runtime is one major determinant of
total runtime of the SVM, especially for complex kernels, this gives a rough
estimate of total runtime and the minimum amount of memory needed to
successfully run the kernel on a given dataset.

It is our hope that both approaches will prove sufficient to apply the SSK more
widely, and that the underlying approach will inspire others as well.

2 Background

This section aims to introduce the reader to the general concept of Support Vec-
tor Machines, the kernel trick and more specifically to the String Subsequence
Kernel (SSK). After this, we explain our approximation method, Lambda Prun-
ing (SSK-LP), in detail.

2.1 Kernels and Support Vector Machines

A Support Vector Machine (SVM) is a classification algorithm which learns a
hyperplane that separates two sets of points that belong to different classes. The
algorithm is based on viewing the linear separation of these sets as an optimiza-
tion problem, the goal of which is to maximize the margin of the hyperplane,
3 E.g. Instance-based learning algorithms. Even in that case an appropriate distance

measure needs to be defined, and kernels can be viewed as distance measures – see
for example Section 4.3.

i.e. the distance from the hyperplane to the nearest point of each class, which
is a measure of the robustness of the separation. In case of non-separability, the
sum of the distances of all points which are on the wrong side of the hyperplane
is bounded by a complexity parameter, usually called C.4

Several methods exist that solve this problem efficiently, for instance Sequen-
tial Minimal Optimization (SMO, [12]) or SVM-light [7]. A nonlinear mapping
from the attribute space to a higher-dimensional feature space is usually applied
prior to training, since a higher number of dimensions increases the probability
that the data becomes linearly separable within the high-dimensional feature
space. This space may be very high-dimensional, which would normally incur
massive computational issues, as runtime and memory consumption would have
to increase at least linearly with the number of dimensions used.

This is the point where one central idea of SVMs comes into play, the so-called
kernel trick : A closer look into the mathematical formulation of SVMs shows
that the data points (vectors) are never used directly, they are only introduced
into the calculations via the dot-product between two such points (see e.g. [3]).
This fact gives rise to the idea of a function combining the mapping and the
dot product, so that it is not necessary to compute the high-dimensional vectors
explicitly. This kind of function is called a kernel function, or short kernel.

More formally, for any mapping φ : D → F the function K : K(x1, x2) =
〈φ(x1), φ(x2)〉 is a kernel function. (〈., .〉 denotes the dot product). An interesting
aspect is that the attribute space D from which the kernel projects data into F
need not necessarily be an euclidic space, but may have any form and dimension,
even infinite dimensionality.

For the Support Vector Machine algorithm to provably work it is just needed
to show that the kernel function satisfies Mercer’s Theorem, although simpler
definitions exist for the finite-dimensional case. It is also sufficient to show that
the kernel function can be written as above, i.e. that a function φ exists such
that K can be written as a dot product of φ(x1) and φ(x2) (see above). Some
kernels have been introduced that are not known to satisfy Mercer’s theorem,
but which still work well in practice. SSK-LP falls into this latter category, as
do some of the kernels used within BioInformatics.5

2.2 String Subsequence Kernel (SSK)

The basic idea behind this type of kernel is to define the dot product of two
sequences by means of the subsequences they contain. The high-dimensional
feature space implied by this kernel contains all possible subsequences as features.

The method proposed in [9] considers contiguous as well as non-contiguous
subsequences; the degree of contiguity determines the weight of the subsequence
match in the comparison. SSK is parametrized by two values, n and λ. The
length of the common subsequences to look for is n. λ is a real value ∈ (0, 1),

4 The original formulation of SVMs calls this complexity parameter λ. Here, λ is a
decay factor that penalizes non-continguous subsequence matches.

5 E.g. kernels based on edit distance, see [2].

which is used as a decay factor to penalize non-contiguous substring matches.
The kernel implicitly maps the input strings to a feature space F that has one
dimension for each possible combination u of n characters.6 The u-coordinate
φu(s) of a given string s is calculated by summing over all occurrences of u in
s. Each occurrence of u yields a value of λl, where l denotes the length of that
occurrence of u in s, that is, the length of u plus all the interior gaps of the
occurrence. The result of the kernel function for two input strings s,t is the dot
product of their feature mappings. More formally:

φu(s) =
∑

i:u=s[i]

λl(i)

Kn(s, t) =
∑

u∈Σn

〈φu(s) · φu(t)〉 =
∑

u∈Σn

∑
i:u=s[i]

λl(i)
∑

j:u=t[j]

λl(j)

=
∑

u∈Σn

∑
i:u=s[i]

∑
j:u=t[j]

λl(i)+l(j) (1)

At first glance this may seen like an exponential algorithm, but [9] also propose
an efficient recursive formulation with dynamic programming that uses only
O(n|s||t|) time. However, an essential feature to obtain the reported runtime
performance is using a cache for all intermediate results, which uses O(n|s||t|)
space.

2.3 Lambda Pruning

Equation 1 shows that the result of the kernel evaluation is a sum over different
powers of λ. It is obvious that the contribution of subsequences u to the overall
result is the smaller the more the subsequence match is stretched in both strings.
When analyzing the recursion tree that is processed for each kernel evaluation,
it becomes clear, on the other hand, that these stretched matches neccessitate
a vast amount of computational effort. These observations together motivate a
change to the algorithm in a way that the recursion is stopped as soon as it is
certain that the result of the current branch is very small. This is a trade-off
between result accuracy and consumed computation time.

This behaviour can be achieved by introducing a bound to the parameters
in the formula that account for the addends in the kernel computation λl(i)+l(j).
By bounding the sum of l(i) + l(j), we can stop the computation once it reaches
the bound, which we have called Maximum Lambda Exponent, or θ.

The new kernel parameter θ is used as the upper bound for exponents of λ
that may occur in the computation. This means that a subsequence match for a
string u is only counted in the final result if the sum of the length of u in s and
the length of u in t (both lengths including the gaps) is smaller than θ.

6 I.e. the kernel implicitly applies the feature mapping φ : D → F .

Kn,θ(s, t) =
∑

u∈Σn

∑
i:u=s[i]

∑
j:u=t[j]

f(l(i), l(j))

f(x, y) =
{

0 if x + y > θ
λx+y otherwise

θ . . . maximum lambda exponent

The influence that θ has on the result is, qualitatively speaking, control of
subsequence match relaxation. The definition set of θ is x ∈ N, 2n ≤ x < ∞.
θ = θ−2n specifies a slack value for match relaxation defining how many interior
gaps each subsequence match may have in s and t together.

Using θ = 2n (θ = 0) makes SSK-LP identical to an n-grams kernel, as
only contiguous substring matches are allowed. Values slightly above 2n (θ > 0)
create a ’fuzzy’ n-grams kernel, while using θ ∈ [4n, 8n] (θ ∈ [2n, 6n]) usually
gives quite a good approximation of SSK, depending on the type of data used.
We have chosen to set a default value of θ = 3n (θ = n), which seems a good
compromise for a variety of learning tasks.

The recursive computation7 of SSK has to be adapted in order to conform
to this definition of lambda pruning. An additional parameter m is added to the
kernel function. Each time a value of λx is multiplied with the recursion result
m is decremented by x and passed to the next recursion level; if the condition
m < 2i is true, the recursion ends prematurely as this means that i characters
would need to be matched in each of string s and t, incurring a total weight of
λ2i. Thus the recursion depth is limited by m.

Definition 1. Recursive computation of SSK with Lambda Pruning (SSK-LP)

K ′
0,m(s, t) = 1, for all s, t

K ′
i,m(s, t) = 0, ifmin (|s|, |t|) < i

Ki,m(s, t) = 0, ifmin (|s|, |t|) < i

K ′
i,m(s, t) = 0, if m < 2i

K ′
i,m(sx, t) = λK ′

i,m−1(s, t) + K ′′
i,m(sx, t), i = 1, . . . , n− 1

K ′′
i,m(sx, tu) = λ|u|K ′′

i,m−|u|(sx, t), 6 ∃k : uk = x

K ′′
i,m(sx, tx) = λ(K ′′

i,m−1(sx, t) + λK ′
i−1,m−2(s, t))

Kn,m(sx, t) = Kn,m(s, t) +
∑

j:tj=x

K ′
n−1,m−2(s, t[1 : j − 1])λ2

In the case of Lambda pruning, we did not use a cache of intermediate results.
Although this would have improved runtime slightly, it would also have drasti-
cally increased memory consumption beyond that needed for the original SSK.8

7 see Efficient Computation of SSK in [9].
8 As there are usually many ways to enter the same recursion tree, but at different

entry points, the cached entry could no longer be properly depth-limited as there is

3 Modeling Time, Space and Error

This section describes the average case runtime model, the worst case memory
consumption model and an investigation into the SSK-LP approximation error.

3.1 Experimental setup

There are several parameters of the SSK which directly influence runtime and
memory consumption. Most prominent among these is the string length strLen
of the input strings (assuming strLen ≈ |s| ≈ |t|) and the common subsequence
length n. λ has no effect on runtime and memory consumption, but features
prominently in the approximation error versus SSK-LP and was therefore also
included. For SSK-LP, we also have θ as an essential parameter for the trade-off
between runtime and approximation accuracy.

Five values for n were considered (1,2,3,4,5), as well as for λ (0.1, 0.25, 0.5,
0.75, 0.9). θ defaults to 3 ∗ n which yields a good trade-off between speed and
accuracy, but we used 6 ∗ n, 9 ∗ n and 12 ∗ n as well.

Rather than doing a theoretical worst-case analysis on runtime, we opted
for a systematic experiment with real-life input data in an average-case runtime
analysis, which will later be compared to spot measurements on input data
from several different sources. Random strings are somewhat of a best case for
SSK, while the worst case would be when both strings consist only of the same
character, and both are unlikely to appear in practice.

As real-life corpus, we used an earlier text-mining dataset from [14], consist-
ing of several tens of thousand samples of MEDLINE abstracts, as string cor-
pus. Each MEDLINE entry corresponds to a single string in this corpus. From
this corpus, we sampled about one hundred strings of specified lengths, namely
strLen = 1500, 750, 375, and 188. We first sampled strings with exactly the de-
sired length, then those one character longer than the desired length, then those
one character shorter than the desired length and so on until enough samples
were collected, so the lengths of the collected strings are as close to the target as
possible.9 Each set of string samples was then paired with a randomly shuffled
version of the same set. Thus we obtained pairs of strings with approximately
the desired length.

We tested all combinations of these parameter values in extensive experi-
ments on a single machine10, and measured time in two different ways to make
sure that the overall CPU load was accounted for, as the experiment did not use
a dedicated machine. The reported execution times are relative to this platform,

only one value per subtree, unless we add the current depth to the cache index. This
however would increase memory consumption for the full cache by a factor of n + 1.

9 The actual string lengths were 1499.60±0.49, 749.18±3.13, 373.91±7.34, and
187.58±3.09, respectively.

10 Athlon64 4000+ with 4GB of main memory, which was sufficient to keep even the
largest working set in memory, running the pure64 version of Debian, kernel 2.6.11.,
with Sun Java 1.5. (64bit version) and a CVS version of WEKA from May 2005 with
SMO.java V1.12.

 1

 10

 100

 1000

 10000

 0 200 400 600 800 1000 1200 1400 1600

M
ea

n
ru

nt
im

e
(m

ill
is

ec
on

ds
)

String length (chars)

n=1
n=2
n=3
n=4
n=5

Fig. 1. Runtime for SSK, averaged over λ.

and therefore will need to be calibrated for other platforms, but should give a
rough overview of the speed of string kernel evaluation.

3.2 Average Case Runtime

Figure 1 shows the runtime for SSK, while Figure 2 shows the runtime for SSK-
LP and the four different values for θ. All runtimes are averaged over different
values of λ to reduce variance.11 In each case we fitted double ridge-regression
models which are shown below, and as lines in each graph. Each symbol cor-
responds to a specific average runtime measurement, averaged both over the
approximately 100 string sample pairs as well as over all different values of λ.

For SSK, we obtained

runT imeSSK = (strLen2 ∗ n)0.726 ∗ e−5.3165

(for n = 1)12 and

runT imeSSK = (strLen2 ∗ n)1.0402 ∗ e−8.897

11 Average relative standard deviation is 0.44% for SSK and 1.03% for SSK-LP, the
latter for execution times of more than 100ms. Values below this had high variance
as we approach the accuracy limits of runtime measurement (1ms per sample).

12 e ≈ 2.718281828 = Euler’s number, since we used natural logarithms.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 200 400 600 800 1000 1200 1400 1600

M
ea

n
ru

nt
im

e
(m

ill
is

ec
on

ds
)

String length (chars)

n=1
n=2
n=3
n=4
n=5

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 200 400 600 800 1000 1200 1400 1600

M
ea

n
ru

nt
im

e
(m

ill
is

ec
on

ds
)

String length (chars)

n=1
n=2
n=3
n=4
n=5

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 200 400 600 800 1000 1200 1400 1600

M
ea

n
ru

nt
im

e
(m

ill
is

ec
on

ds
)

String length (chars)

n=1
n=2
n=3
n=4
n=5

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 200 400 600 800 1000 1200 1400 1600

M
ea

n
ru

nt
im

e
(m

ill
is

ec
on

ds
)

String length (chars)

n=1
n=2
n=3
n=4
n=5

Fig. 2. Runtime for SSK-LP, averaged over λ. Top left θ = 3 ∗ n, Top right θ = 6 ∗ n.
Bottom left: θ = 9 ∗ n, Bottom right: θ = 12 ∗ n.

(for n > 1). The output is the estimated time in milliseconds per kernel eval-
uation. Some small optimizations of the first inner loop are responsible for the
better runtime of n = 1, and for n > 1 we see that the average case runtime is
very close to the worst case runtime of O(strLen2 ∗ n) which was given in [9].

For SSK-LP, we similarily obtained

runT imeSSK LP = strLen1.425 ∗ e−8.1063

(for n = 1) and

runT imeSSK LP =
θ!1.0549

n!1.8839 ∗ (θ − n)!1.039 ∗ θ1.3331
∗ strLen1.9978 ∗ e−10.4875

(for n > 1). The left part is similar to a binominal coefficent of θ and n (except
for the additional factors of 1

n!0.8839 and 1
θ1.3331), which we have reason to believe

to feature prominently in the runtime of SSK-LP due to an earlier analysis.
The correlation coefficient of this model is 0.9986, relative mean squared error is
0.1662 (5.2037%), which reinforces our belief that this model, albeit being rather
more complex than the one for SSK, is valid. Also, figure 2 shows graphically
that this function fits the observations rather well.

 1e+06

 1e+07

 1e+08

 1e+09

 0 200 400 600 800 1000 1200 1400 1600

M
em

or
y

(b
yt

es
)

String length (chars)

n=1
n=2
n=3
n=4
n=5

Fig. 3. Memory consumption for SSK, averaged over λ.

3.3 Worst Case Memory Consumption

Figure 3 shows the memory consumption for SSK. Memory consumption was
averaged over all values of λ, which reduces variance.13 For each set of string pair
samples, only the highest measured memory consumption was used. A regression
model has been fitted to the data. Memory consumption is dominated by the
cache for intermediate results, and can be computed as MemSSK = 38.5888 ∗
(strLen + 1)2 ∗ (n + 1) + 1, 655, 638.1147 (in bytes, round up final result).

The worst case memory consumption of SSK-LP, MemSSK LP , is 4,259,840
bytes, independent of all tested parameter settings.

3.4 Approximation Error of SSK-LP vs. SSK

Figure 4 shows the approximation error of SSK-LP vs. SSK in dependence on θ
(X axis), n (Y axis) and lambda (lines within each subgraph). As can be seen,
for λ of 0.1 and 0.25, agreement is very good over all parameter settings. In some
cases agreement is also good for λ = 0.5. For λ of 0.75 and 0.9, the approximation
is much worse, since in this case non-contiguous subsequence matches have a
much higher effect on the final value. Figure 5 shows the runtime of SSK vs.

13 As expected, values were practically identical for all five different λ values, given any
set of other parameter values.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

M
ea

n
ra

tio
 S

S
K

/S
S

K
-L

P
 v

al
ue

s

String length (chars)

n=1, theta=12*n

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

M
ea

n
ra

tio
 S

S
K

/S
S

K
-L

P
 v

al
ue

s

String length (chars)

n=1, theta=3*n

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

M
ea

n
ra

tio
 S

S
K

/S
S

K
-L

P
 v

al
ue

s

String length (chars)

n=1, theta=6*n

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

M
ea

n
ra

tio
 S

S
K

/S
S

K
-L

P
 v

al
ue

s

String length (chars)

n=1, theta=9*n

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

M
ea

n
ra

tio
 S

S
K

/S
S

K
-L

P
 v

al
ue

s

String length (chars)

n=2, theta=12*n

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

M
ea

n
ra

tio
 S

S
K

/S
S

K
-L

P
 v

al
ue

s

String length (chars)

n=2, theta=3*n

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

M
ea

n
ra

tio
 S

S
K

/S
S

K
-L

P
 v

al
ue

s

String length (chars)

n=2, theta=6*n

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

M
ea

n
ra

tio
 S

S
K

/S
S

K
-L

P
 v

al
ue

s

String length (chars)

n=2, theta=9*n

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

M
ea

n
ra

tio
 S

S
K

/S
S

K
-L

P
 v

al
ue

s

String length (chars)

n=3, theta=12*n

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

M
ea

n
ra

tio
 S

S
K

/S
S

K
-L

P
 v

al
ue

s

String length (chars)

n=3, theta=3*n

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

M
ea

n
ra

tio
 S

S
K

/S
S

K
-L

P
 v

al
ue

s

String length (chars)

n=3, theta=6*n

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

M
ea

n
ra

tio
 S

S
K

/S
S

K
-L

P
 v

al
ue

s

String length (chars)

n=3, theta=9*n

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

M
ea

n
ra

tio
 S

S
K

/S
S

K
-L

P
 v

al
ue

s

String length (chars)

n=4, theta=12*n

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

M
ea

n
ra

tio
 S

S
K

/S
S

K
-L

P
 v

al
ue

s

String length (chars)

n=4, theta=3*n

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

M
ea

n
ra

tio
 S

S
K

/S
S

K
-L

P
 v

al
ue

s

String length (chars)

n=4, theta=6*n

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

M
ea

n
ra

tio
 S

S
K

/S
S

K
-L

P
 v

al
ue

s

String length (chars)

n=4, theta=9*n

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

M
ea

n
ra

tio
 S

S
K

/S
S

K
-L

P
 v

al
ue

s

String length (chars)

n=5, theta=12*n

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

M
ea

n
ra

tio
 S

S
K

/S
S

K
-L

P
 v

al
ue

s

String length (chars)

n=5, theta=3*n

lambda=0.10
lambda=0.25
lambda=0.50
lambda=0.75
lambda=0.90

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

M
ea

n
ra

tio
 S

S
K

/S
S

K
-L

P
 v

al
ue

s

String length (chars)

n=5, theta=6*n

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

M
ea

n
ra

tio
 S

S
K

/S
S

K
-L

P
 v

al
ue

s

String length (chars)

n=5, theta=9*n

Fig. 4. Ratio of SSK-LP values to SSK values (1.0 = perfect agreement).

SSK-LP in the same layout as Figure 4. It shows that SSK-LP is faster in the
lower triangle (for slightly less than half of the parameter settings tested). A more
precise estimate of the applicability of SSK-LP to a given problem can always
be computed directly, via the models of memory consumption and runtime we
presented earlier.

 0.01

 1

 100

 10000

 1e+06

 0 200 400 600 800 1000 1200 1400 1600

M
ea

n
ru

nt
im

e
(m

ill
is

ec
on

ds
)

String length (chars)

n=1, theta=12*n

 0.01

 1

 100

 10000

 1e+06

 0 200 400 600 800 1000 1200 1400 1600

M
ea

n
ru

nt
im

e
(m

ill
is

ec
on

ds
)

String length (chars)

n=1, theta=3*n

 0.01

 1

 100

 10000

 1e+06

 0 200 400 600 800 1000 1200 1400 1600

M
ea

n
ru

nt
im

e
(m

ill
is

ec
on

ds
)

String length (chars)

n=1, theta=6*n

 0.01

 1

 100

 10000

 1e+06

 0 200 400 600 800 1000 1200 1400 1600

M
ea

n
ru

nt
im

e
(m

ill
is

ec
on

ds
)

String length (chars)

n=1, theta=9*n

 0.01

 1

 100

 10000

 1e+06

 0 200 400 600 800 1000 1200 1400 1600

M
ea

n
ru

nt
im

e
(m

ill
is

ec
on

ds
)

String length (chars)

n=2, theta=12*n

 0.01

 1

 100

 10000

 1e+06

 0 200 400 600 800 1000 1200 1400 1600

M
ea

n
ru

nt
im

e
(m

ill
is

ec
on

ds
)

String length (chars)

n=2, theta=3*n

 0.01

 1

 100

 10000

 1e+06

 0 200 400 600 800 1000 1200 1400 1600

M
ea

n
ru

nt
im

e
(m

ill
is

ec
on

ds
)

String length (chars)

n=2, theta=6*n

 0.01

 1

 100

 10000

 1e+06

 0 200 400 600 800 1000 1200 1400 1600

M
ea

n
ru

nt
im

e
(m

ill
is

ec
on

ds
)

String length (chars)

n=2, theta=9*n

 0.01

 1

 100

 10000

 1e+06

 0 200 400 600 800 1000 1200 1400 1600

M
ea

n
ru

nt
im

e
(m

ill
is

ec
on

ds
)

String length (chars)

n=3, theta=12*n

 0.01

 1

 100

 10000

 1e+06

 0 200 400 600 800 1000 1200 1400 1600

M
ea

n
ru

nt
im

e
(m

ill
is

ec
on

ds
)

String length (chars)

n=3, theta=3*n

 0.01

 1

 100

 10000

 1e+06

 0 200 400 600 800 1000 1200 1400 1600

M
ea

n
ru

nt
im

e
(m

ill
is

ec
on

ds
)

String length (chars)

n=3, theta=6*n

 0.01

 1

 100

 10000

 1e+06

 0 200 400 600 800 1000 1200 1400 1600

M
ea

n
ru

nt
im

e
(m

ill
is

ec
on

ds
)

String length (chars)

n=3, theta=9*n

 0.01

 1

 100

 10000

 1e+06

 0 200 400 600 800 1000 1200 1400 1600

M
ea

n
ru

nt
im

e
(m

ill
is

ec
on

ds
)

String length (chars)

n=4, theta=12*n

 0.01

 1

 100

 10000

 1e+06

 0 200 400 600 800 1000 1200 1400 1600

M
ea

n
ru

nt
im

e
(m

ill
is

ec
on

ds
)

String length (chars)

n=4, theta=3*n

 0.01

 1

 100

 10000

 1e+06

 0 200 400 600 800 1000 1200 1400 1600

M
ea

n
ru

nt
im

e
(m

ill
is

ec
on

ds
)

String length (chars)

n=4, theta=6*n

 0.01

 1

 100

 10000

 1e+06

 0 200 400 600 800 1000 1200 1400 1600

M
ea

n
ru

nt
im

e
(m

ill
is

ec
on

ds
)

String length (chars)

n=4, theta=9*n

 0.01

 1

 100

 10000

 1e+06

 0 200 400 600 800 1000 1200 1400 1600

M
ea

n
ru

nt
im

e
(m

ill
is

ec
on

ds
)

String length (chars)

n=5, theta=12*n

 0.01

 1

 100

 10000

 1e+06

 0 200 400 600 800 1000 1200 1400 1600

M
ea

n
ru

nt
im

e
(m

ill
is

ec
on

ds
)

String length (chars)

n=5, theta=3*n

SSK
SSK-LP

 0.01

 1

 100

 10000

 1e+06

 0 200 400 600 800 1000 1200 1400 1600

M
ea

n
ru

nt
im

e
(m

ill
is

ec
on

ds
)

String length (chars)

n=5, theta=6*n

 0.01

 1

 100

 10000

 1e+06

 0 200 400 600 800 1000 1200 1400 1600

M
ea

n
ru

nt
im

e
(m

ill
is

ec
on

ds
)

String length (chars)

n=5, theta=9*n

Fig. 5. Runtime of SSK-LP and SSK (in milliseconds) according to the runtime models.

4 Real-Life Performance

In this section we report on experiments with real-life data. We have focussed
on three different problems: domain recognition from biological research papers,
email spam recognition from sender email address, and the use of SSK as a sim-
ilarity measure for redundancy clustering – a linguistic task related to sentence
entailment.

We used the default settings of n = 3 and λ = 0.5 for SSK, and θ = 9 for
SSK-LP, unless otherwise noted. The SVM cost parameter was set to C = 1.
Table 1 gives a short overview of all results.

Sec. SSK SSK-LP
est.RT/eval est.RT total runtime result est.RT/eval est.RT total runtime result

4.1. 1731ms 399.5d n/a n/a 89ms 20.5d 21.6d 97.5%
4.2. 0.36ms 2h 17m 16h 50m 84.32% 0.03ms 11.4m 3h 19m 83.98%
4.3. 17.76ms 17.7m 13.95m see text 1.09ms 1.09m 1.03m see text
Table 1. This table shows all real-life performance results at one glance. All variants
are run with default settings n = 3,λ = 0.5, and θ = 3 ∗ n = 9 (except 4.2. which used
feature space normalization)

4.1 Text mining

For this experiment, we wanted to check the suitability of SSK for standard
text mining. We chose the domain dataset from [14]. The learning task was text
classification, i.e. classifying bibliographic entries from MEDLINE as belonging
to one of four biological domains: Archaea, Bacteria, Eukaryota or Virus. We
used the 5% sample and a two-fold CV for accuracy estimation. The results are
thus comparable to those reported in [14], Table 1, Acc.CV. The dataset contains
5156 examples. Average length of the input strings is 1497.21±486.26.

According to our runtime model, SSK is expected to take around 1731ms for
one kernel evaluation. To generate the full kernel matrix for a dataset with n

examples, at least n(n−1)
2 kernel evaluations are needed. Additionally, a two-fold

CV must compute a half-sized kernel matrix twice, so the total number of kernel
evaluations is about 3n2

4 . Running SSK on this dataset once would have taken
more than a year, and was therefore not considered.

SSK-LP, on the other hand, should take around 89ms for one kernel eval-
uation, which reduces the expected runtime to 20.5 days. We ran SSK-LP on
this data, and the actual runtime was 518h (21.6d), which agrees well with our
estimate.

The performance SSK-LP at 97.5% accuracy is competitive to a linear SVM
with the word vector as input (i.e. one attribute for each word that appears in
training data) at 97.7%. Concerning runtime, it is not competitive: the linear
SVM takes around two minutes for the same task. This agrees well with [7], who
argued that for most text classification tasks the relatively simple word vector
representation is already sufficient.

4.2 Spam filtering

For the second task, we chose a string classification task. Rather than a classic
text mining task, where it is feasible to segment the string into smaller con-
stituents by tokenization, this is no longer easily possible for string classification.
[16] describes extensive experiments on a large corpus consisting of about 90,000
ham and spam mails. Based on the anecdotal observation that it is often possible
to recognize spam mails via a small number of string features (namely, sender
address, sender name and the subject), we were interested to find out whether
SSK could learn to do the same.

We randomly chose a small number of 3,902 samples of recipient email ad-
dresses from this corpus (roughly half from spam and half from ham mails).
Sender email addresses were chosen since these are the hardest to tokenize;
sender name and subject would have been amenable to a simple tokenization
approach and was thus considered unsuitable. The string length in this case is
only 25.56±11.08, so both SSK and SSK-LP can be run on this data. Our run-
time models give 0.36ms for SSK, and 0.03ms for SSK-LP, which is below the
applicability of the runtime model – the shortest runtime that could be mea-
sured was 1ms. This explains why the agreement in that case is quite bad. SSK
took 16h 50min to run (est. 2h 17m), while SSK-LP took 3h 19min (est. 11.4m).
The speedup factor of about an order of magnitude for SSK-LP over SSK can
still be approximately deduced from the differences in estimated runtimes. We
used feature space normalization14 here, which approximately doubles runtime
for kernel evaluation.

The accuracy was again estimated via two-fold cross-validation. The accu-
racies of SSK at 84.32% and SSK-LP at 83.98% were very similar. Systematic
parameter optimization of c, n and λ for SSK, including switching off feature
space normalization had only negligible influence on the result. The default pa-
rameter settings already give the second highest accuracy of 83.39%. SSK-LP
with θ = 2 ∗ n = 6 (equivalent to 3-grams) using feature space normalization
offers an accuracy of 82.4% and took 57min to run.

4.3 Redundancy clustering

Here, we describe previously unpublished work on redundancy clustering within
the BioMinT project (for context see e.g. [11],[14],[15]). The main focus of
BioMinT was the extraction of new knowledge from biological research papers
via innovative text mining approaches. One subtask was to automatically de-
termine and remove redundant sentences from a result set to give a succint
presentation of the found results to the user. On the one hand, this is somewhat
related to summarization approaches; on the other hand, to the known linguistic
concept of sentence entailment. Entailment is considered a very hard task, and
there are few approaches which perform better than a simple baseline approach.

Within BioMinT, a corpus of redundant sentences was provided by one of our
partners. We received this information as a set of sentence groups. Within each
sentence group there was a primary sentence that provided all of the informa-
tion, associated with a set of secondary sentences that provided only information
that was already present in the primary sentence. All secondary sentences were
considered redundant. To make the task more feasible, we mapped this dataset
to pairwise similarity, without distinguishing between primary sentence and sec-
ondary sentences. The similarity between two sentences was determined via sev-
eral methods, and all pairs of sentences with similarity values above a certain
threshold were considered redundant while all other pairs were considered to
be not redundant. Thus we obtained 59,810 sentence pairs, of which 2,500 were

14 Using kernel K′(x, y) = K(x,y)
K(x,x)K(y,y)

, which ensures K’(x,x) is equal to 1.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
la

ss
 1

 (r
ed

un
da

nt
)

Class 0 (not redundant)

Random
Simple

SSK-def
SSK-opt
SSK-LP

Fig. 6. This figure shows a ROC curve of the two similarity measures (see text). The
X axis corresponds to the proportion of non-redundant sentences which were correctly
classified, and the Y axis corresponds to the proportion of redundant sentences which
were correctly classified by the system. The unbroken line from (0,1) to (1,0) corre-
sponds to the average performance of a random similarity measure.

marked as redundant. Instead of fixing the threshold arbitrarily and reporting
a single result, we have chosen to visualize the results as a ROC curve, where
the performance at arbitrary thresholds is observable at one glance. The string
length for this learning task was 165.68±61.27, giving single evaluation times of
17.76ms for SSK and 1.09ms for SSK-LP.

We have selected four ways to determine similarity between arbitrary sen-
tences (S1,S2):

– Simple, the number of common words between S1 and S2, divided by the
length (in words) of the shorter sentence. This is a simple baseline approach.

– SSK-def, which determines the similarity between S1 and S2 by computing
an evaluation of the unnormalized string kernel (i.e. SSK), which is nor-
mally used as a kernel for the learning algorithm family of Support Vector
Machines. We chose the default settings of λ = 0.5 and n = 3 here.

– SSK-opt is the same as SSK-def but with n = 6 which was found to be the
optimal setting for n here.

– SSK-LP, which determines the similarity between S1 and S2 via SSK-LP. In
this case, we used λ = 0.5, n = 6 and θ = 2 ∗ n = 12, so this is equivalent to
a simpler 6-grams approach.

Figure 6 shows the results. The unbroken line visualizes the average performance
of a random similarity measure (i.e. where the values of sim(S1,S2) are chosen
randomly). The higher above this line a measure is, the better it performs. As
can be seen, SSKdef already performs much better than the simpler baseline
approach. Parameter optimization for n improves on this result. While the equiv-
alent 6-grams approach (SSK-LP) performs competitively, we did not optimize
λ here which might have improved performance for SSK beyond SSK-opt.

5 Related Work

[8] propose a different kind of string kernel, the so-called spectrum or mismatch
kernel. The restriction to n-grams (i.e., contiguous subsequences) as features
allows a more efficient implementation. They do not show that their kernel sat-
isfies Mercer’s theorem, but [2] demonstrate this. As SSK-LP with θ = 2 ∗ n is
equivalent to using n-gram features, this specific variant must therefore satisfy
Mercer’s theorem as well.

[1] introduce convolution kernels for natural language processing, i.e. a tree
kernel based on the ideas of [6]. They quote (unproved) an average runtime that
is linear in the tree size, but worst case performance is on the order of square
of tree size. This kernel is shown to satisfy Mercer’s theorem. Features are all
common subtrees, so again no gaps are considered.

[9] is another work that can be viewed as based on [6], and gives the original
implementation of SSK as well as some experimental results. This work has
already been amply discussed throughout this paper.

A recent work is [2] on Rational Kernels, which unifies several approaches to
build kernels on complex data structures, and also shows that edit distance with
a alphabet of size greater than 1 does not satisfy Mercer’s theorem. They show
that a single algorithm is suffient to implement all rational kernels, albeit via a
finite automaton approach – a programming language by any other name – and
thus cannot claim to simplify the implementation of new kernels.

[13] offer a comprehensive evaluation of several approaches to compute string
kernels, namely trie-based and full dynamic programming (similar to SSK), and
propose a sparse dynamic programming approach. While runtime results are
given, no analytical model is obtained. Additionally, their proposed new method
depends on alphabet size and the number of gaps that are permitted as well
as string length, so the results are not directly comparable to our work. Their
runtime complexity is O(n|M |log|s|), where |M | is the size of the alphabet.
However, while the worst-case runtime will in some cases be better than that
for SSK and SSK-LP, the obtained actual runtime might still be too slow for
reasonably sized real-life datasets. As case in point, they have focussed only on
single kernel evaluations rather than running a SVM based on these kernels.

6 Conclusion

The work at hand presents Lambda Pruning, a novel approach to approximating
the String Subsequence Kernel (SSK) by Lodhi et al.[9]. The resulting kernel,
SSK-LP for short, is implemented in Java and available as a part of the Weka
data mining platform15. Our runtime and space complexity models allow to
compute the expected runtime and memory consumption for both variants, and
would even allow an automatic choice between the variants based on input data
and given parameter settings.

We have investigated both variants on several learning tasks and noted that
the string kernels are most useful for string classification tasks, where a tok-
enization is not easily apparent, and as similarity measure for redundancy clus-
tering. The given runtime models usually agree well with actual runtime and
have proven useful to determine the relative speedup of SSK-LP versus SSK as
well as to exclude some parameter settings because of excessive runtime. Our
work is therefore an important step towards the practical applicability of string
kernels for real-life learning tasks, and this approximation approach may prove
useful for other complex kernels as well.

We should note that in our real-life experiments, n-gram approaches were
found to be competitive, and their implementations can be made more efficient.
More work is needed to improve SSK to take adequate advantage of the capability
to consider non-contiguous subsequences as well as improving efficiency further.

Being the first algorithm for learning from sequences in Weka, this opens a
new perspective for its users; moreover, the reduced complexity of SSK-LP makes
the Support Vector Machine approach a viable alternative for text mining even
on small devices with little main memory.

7 Acknowledgements

This research was partially supported by the European Commission as project
no. QLRI-CT-2002-02770 (BioMinT) under the RTD programme Quality of Life
and Management of Living Resources. The Studio Smart Agent Technologies is
supported by the Austrian Federal Ministry of Economics and Labour. We grate-
fully acknowledge the support of the University of Manchester in providing the
redundancy dataset.

References

1. M. Collins and N. Duffy. Convolution kernels for natural language. In T. G. Di-
etterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information
Processing Systems, volume 14, Cambridge, MA, 2002. MIT Press.

15 Check out CVS release from www.cs.waikato.ac.nz/

~ml/weka. Use weka.classifiers.functions.SMO with kernel
weka.classifiers.functions.supportVector.StringKernel. -P 0 = SSK, -P 1 = SSK-LP.

2. C. Cortes, P. Haffner and M. Mohri: Rational Kernels: Theory and Algorithms,
Journal of Machine Learning Research 5 (2004) 1035–1062.

3. N. Cristianini, J. Shawe-Taylor: An Introduction to Support Vector Machines, Cam-
bridge University Press, 2000.

4. E. Frank, I.H. Witten: Data Mining - Practical Machine Learning Tools and Tech-
niques (2nd ed). Morgan Kaufmann / Elsevier, 2005.
http://www.cs.waikato.ac.nz/~ml/weka/

5. T. Gartner, P. A. Flach, and S. Wrobel: On Graph Kernels: Hardness Results and
Efficient Alternatives, Sixteenth Annual Conference on Computational Learning
Theory and The Seventh Kernel Workshop (COLT-2003).

6. D. Haussler. Convolution kernels on discrete structures. Technical Report UCSC-
CRL -99-10, Baskin School of Engineering, University of California, Santa Cruz,
1999.

7. T. Joachims Learning to Classify Text Using Support Vector Machines, Kluwer
Academic Publishers, May 2002.

8. C. Leslie, E. Eskin, and W. S. Noble: The spectrum kernel : A string kernel for SVM
protein classification. In Proceedings of the Pacific Symposium on Biocomputing,
pages 564–575, 2002.

9. H. Lodhi, C. Saunders, J. Sahwe-Taylor, N. Christianini, C. Watkins: Text Clas-
sification using String Kernels, Journal of Machine Learning Research 2 (2002),
p.419–444.

10. M. Minsky, S.A. Papert: Perceptrons: An Introduction to Computational Geometry.
MIT Press, Cambridge, MA, expanded edition, 1988/1969.

11. V. Pillet, M. Zehnder, A.K. Seewald, A-L Veuthey, and J. Petrak. GPSDB: a new
database for synonyms expansion of gene and protein names. Bioinformatics 2005
21: 1743-1744.

12. J. Platt: Sequential Minimal Optimization:A Fast Algorithm for Training Support
Vector Machines

13. J. Rousu, and J. Shawe-Taylor. Efficient Computation of Gapped Substring Kernels
on Large Alphabets, Journal of Machine Learning Research 6 (2005), pp.1323–1344.

14. A.K. Seewald: Recognizing Domain and Species from MEDLINE Proteomics Publi-
cations. Workshop on Data Mining and Text Mining for Bioinformatics, 14th Euro-
pean Conference on Machine Learning (ECML-2003), Dubrovnik-Cavtat, Croatia,
2003.

15. A.K. Seewald: Ranking for Medical Annotation: Investigating Performance, Local
Search and Homonymy Recognition. Proceedings of the Symposium on Knowledge
Exploration in Life Science Informatics (KELSI 2004), Milano, Italy.

16. A.K. Seewald: An Evaluation of Naive Bayes Variants in Content-Based Learning
for Spam Filtering. Austrian Research Institute for Artificial Intelligence, Technical
report, TR-2005-20, Vienna, 2005.

