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Abstract. We describe an in-depth analysis of spam-filtering performance of a
simple Naive Bayes learner and two current variants. A set of seven mailboxes
comprising about 65,000 mails from seven different users, as well as a representative
snapshot of 25,000 mails which were received over 18 weeks by a single user, were
used for evaluation. Our main motivation was to test whether two variants of Naive
Bayes learning, SpamAssassin and CRM114, were superior to simple Naive Bayes
learning, represented by SpamBayes. Surprisingly, we found that the performance of
these systems was remarkably similar and that the extended systems have significant
weaknesses which are not apparent for the simpler Naive Bayes learner. The simpler
Naive Bayes learner, SpamBayes, also offers the most stable performance in that it
deteriorates least over time. Overall, SpamBayes should be preferred over the more
complex variants.
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1. Introduction

Spam has become a problem of global impact. For example, according
to a study undertaken for the European Commission, Internet sub-
scribers worldwide wasted an estimated 10 billion Euro per year just in
connection costs due to Spam already in 2001 (Gauthronet & Drouard,
2001). Economic impact is only part of the problem – waste of time,
resources and the gradual erosion of trust in EMail communications
should also be considered. Within the scientific community these effects
are felt strongly. For example, at our institute the overall proportion
of Spam now exceeds 90%. For every nonspam mail, we thus receive
around 15-20 spam mails – more than 1,000 spams per day per user in
the worst case.

Several approaches exist to deal with spam (Hoffman & Crocker,
1998). Filtering approaches based on simple message features such as
the occurrence of certain words (e.g. Viagra) are most widely used.
In fact, most email clients already allow their users to manually build
such email filters. However, the manual approach is time-consuming
and much expertise is needed to create useful filters from scratch. Also,
such filters need to be maintained and updated as they are an obvious
target for spammers to attack.1

Another option for filtering is to collect samples of spam and ham
(i.e. nonspam) and train a learning system. This has been proposed e.g.
by (Graham, 2003) and works surprisingly well even with simple sta-
tistical classifiers such as Naive Bayes, which operate on large word oc-
currence vectors and utilize the Bayes Rule. Most state-of-the-art spam
filters now include learning systems, e.g. SpamBayes (spambayes.org),
CRM114 (crm114.sourceforge.net) and SpamAssassin (spamassassin.
org). We will investigate all three of these approaches. The obvious
goal would be to train a model that is harder to attack, i.e. one that
deteriorates less over time than the manual filtering approaches.

There are also ready-to-use systems which do not need to be ini-
tialized for a specific user, but work in a user-independent way. These
use a variety of techniques, e.g. Spam traps (honey pots) which col-
lect spams sent to specifically set up EMail adresses, manual rules,
Naive Bayes learning, or non-disclosed techniques. In (Seewald, 2005),
we have compared the performance of various learning and ready-to-
use systems, and found that the best ready-to-use system (Symantec
BrightMail 6) already performs competitively to the best learning sys-
tem (SpamBayes). However, the effort in updating and running these

1 Such attacks usually work well. They are aided by the human ability to recognize
ambiguous words. For example, there are 600,426,974,379,824,381,952 ways to spell
viagra comprehensibly, see http://cockeyed.com/lessons/viagra/viagra.html

spam-journal.tex; 5/09/2005; 21:11; p.2



Naive Bayes Variants for Spam Filtering 3

systems is high and even only receiving updates may be prohibitive for
small research institutes or small companies.2

Apart from these content-based systems there are also behaviour-
based systems. These systems decide if a given mails is spam based
not on its content, but on the behaviour of the sending mail server.
Sending the same mail to all accounts of a mail domain within a few
milliseconds, or starting the SMTP session with HELO followed by an
IP address instead of a fully qualified domain, as well as more elaborate
techniques (e.g. greylisting3) have been proposed. The approach looks
promising and would probably benefit from combination with content-
based approaches. Behaviour-based systems will not be discussed here
as completely different data would have to be collected.

Our main motivation was to evaluate our learning approach to train
SpamAssassin (SA-Train) which has been developed and refined over
the last year to two other state-of-the-art learning systems, CRM114
and SpamBayes. Of these systems, both CRM114 and SpamAssassin
can be seen as extensions of Naive Bayes learning4 (represented by
SpamBayes) in two different directions: towards more complex concept
descriptions (CRM114: phrases instead of words, which also necessi-
tates a more complex way to estimate phrase probabilities via Markov
Models), and by extending the NB learner with human background
knowledge (SpamAssassin: 900+ handwritten rules to recognize spam).
In the light of these conceptual similarities, we can rephrase our main
motivation as to determine whether these two ways to improve on Naive
Bayes learning have been successful. It will turn out that they have not
been successful.

Previous studies, e.g. (Cormack, 2004), have focussed on represen-
tative mailbox collections from a single user, collected online during
spamfilter training. The focus on a single user is understandable, since
collecting and cleaning mails is a major effort, and long periods of time
are needed to obtain sufficiently large mailboxes for extensive experi-
ments. However, this limits the generality of the results, as mailboxes
are usually quite variable, and conclusions do not always agree.

Our approach compares results on seven different mailboxes, there-
fore the results are likely to hold more generally. However, our mail-

2 During the evaluation of the test version of BrightMail, around 700 megabytes
of updates were received weekly. Around 7 megabytes of ham and spam email are
received at our institute per user and week, so the break-even point – where the
bandwidth for BrightMail equals the email bandwidth – would be achieved at around
100 users. Below 100 users a locally trained filter may be preferrable.

3 See e.g. http://projects.puremagic.com/greylisting/whitepaper.html
4 Naive Bayes learning with the usual setting for text mining: splitting each

document (mail) into words, and using each unique word as a feature in a word
occurrence vector. The probabilities are estimated in the usual way, see Section 3.3.
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4 Alexander K. Seewald

boxes are not truly representative since training a spam filter online
(which would automatically collect a representative set of ham and
spam mails) is very costly: several months are needed to achieve ac-
ceptable performance. During this period, all received mails – ham and
spam mails both – need to be thoroughly checked. None of my col-
leagues was willing to spend so much time to obtain a good spamfilter.
To speed this process up, we have combined a set of recent spam mails
with historical ham mails from each user’s mailbox, and used this mail-
box for training. This set is no longer representative, as the time frame
of ham and spam mails is different. Additionally, the ratio of spam to
ham mails is also different and somewhat arbitrary. Even though these
mailboxes are no longer truly representative, the resulting SA-Train
spam filters show exceptionally good performance which remains stable
for several months.5 In light of these positive results, we have chosen
to use non-representative mailboxes for the evaluation. However, the
non-matching timeframes of ham and spam mails prevents using these
mailboxes to determine the deterioration of performance over time due
to concept drift. For this, we had to use a representative mailbox by
another user, #8.

Since the mailboxes can not be made publicly available because of
confidentiality issues, we chose to investigate the performance of these
systems from a variety of different viewpoints. We considered not only
training each mailbox separately, but also pooled training sets from all
mailboxes to train a single model for all users. The latter was deemed
preferable for efficiency reasons as it enables to train a single filter
for a small set of users and it will turn out that it improves overall
performance as well. We investigated the performance of each system
as well as its susceptibility to class noise (i.e. wrongly classified ham
and spam mails), which is a measure of how much effort must be taken
to clean the data prior to training.

All investigated systems can be made to return confidence values
(somewhat related to the probability that a specific mail is a ham or
spam mail) which are usually mapped to a two-class decision (either
ham or spam mail) via a default threshold. By varying the threshold,
a large set of systems can be generated which offer different trade-offs,
and this multitude of systems can be visualized in a single graph. This

5 This may be because concept drift is much smaller for ham than for spam mails,
and therefore the mixing of recent spam mails with older ham mails does not affect
generalization performance adversely.
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Naive Bayes Variants for Spam Filtering 5

offers a more comprehensive view of the performance of each system,
and may be preferrable.6

Most of our experiments are within a time-independent framework
(i.e. training and testing does not take the chronological order of mails
into account), similar to those studies which use cross-validation. We
have argued that, since training spamfilters with our data works well,
and assuming that concept drift in hams mails is much smaller than
concept drift in spam mails, the data can be tentatively assumed to
contain little or no concept drift. This may also be seen since the time
frame for spam mails – where concept drift is expected to be high – is
quite small due to the mail collection process, while the concept drift
for ham mails is expected to be much smaller and thus have little effect
on the combined concept drift although the time frame is much larger.

We have however tested our systems in a time-dependent fashion
against a representative set of mails from a different user, investigating
the deterioration of performance over time as well as the suitability
of several continuous (incremental) training approaches for the best
system. Again, some surprising results were obtained. Since during the
course of our experiments we began to suspect our specific training
procedure to be responsible for various observed weaknesses of two
systems, we have determined the performance of each system using
two simpler training procedures. In one case, we could confirm the link
between our training procedure and higher noiselevel-susceptibility; in
another, we found no link between our training procedure and high
deterioration of FN rate over time.

The contributions of this paper can be summarized as an in-depth
analysis of three state-of-the-art content-based learning spam-filters,
which incorporates the following aspects:

− Performance (FP and FN rate) with default thresholds

− Threshold-independent performance (i.e. FP/FN trade-off curves:
plotting FP vs. FN rate for a large set of thresholds at double-
logarithmic scales)

− (Class-)Noise-level susceptibility (default threshold only)

− Performance over time (default threshold and threshold-independent)

− Performance with simplified training procedures (default threshold
and threshold-independent)

6 (Cormack, 2004) found that differences in thresholds explains most of the differ-
ence between spam filtering systems, so only looking at the classification performance
may overestimate the differences between systems.
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Table 1. A set of classification decisions
for mails belonging to either ham (–)
or spam (+) category within a specific
mailbox can be succintly represented by
a contingency table. The columns repre-
sent the prediction of the system while
the rows represents the true class. a,b,c,d
represent the number of mails in the
respective category.

Predicted Class

spam (+) ham (–)

True spam (+) a b

Class ham (–) c d

− Relation between time-independent and time-dependent estima-
tion of error w.r.t performance and shape of FP/FN trade-off
curves.

− Estimation of Concept Drift w.r.t. difference models and training
methods

Concluding, the main focus was determining whether the extended
Naive Bayes learning systems (SpamAassassin and CRM114) outper-
form their ancestor, represented by SpamBayes. The rest of the paper is
structured as follows: In Section 2., we will explain the evaluation mea-
sures we used. In Section 3., we will describe the learning systems and
how we trained each of them. In Section 4., we will describe our mailbox
collection and how we collected and cleaned it. In Section 5., we will
shortly describe the rest of experimental setup. Section 6. is concerned
with our primary results. Section 7. is concerned with our experiments
and results with respect to concept drift. Section 8. describes related
research, and Section 9. summarizes the overall conclusions.

2. Evaluation measures

#N = a + b + c + d number of mails (1)
#Spams = a + b number of true spams(2)
#Hams = c + d number of true hams (3)

SHratio =
#Spams

#Hams
Spam/Ham ratio (4)

FPrate =
c

#Hams
FP rate, Ham Recall (5)
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Naive Bayes Variants for Spam Filtering 7

FNrate =
b

#Spams
FN rate, Spam Recall (6)

Err =
b + c

#N
=

= FNrate
1

1 + 1
SHratio

+ FPrate
1

1 + SHratio
Overall error rate (7)

Acc =
a + d

#N
= 1− Err Overall accuracy (8)

The effectiveness of spam filtering systems is usually measured in
terms of correct and wrong decisions. For simplicity, we restrict our-
selves to two classes: ham (– aka nonspam) and spam (+). For a given
mailbox, the classification of a spam filtering system can then be sum-
marized in a contingency table, see Table 1. a (True Positives) and d
(True Negatives) are the number of spam resp. ham mails which are
correctly predicted by the system. c (False Positives) are errors where
ham mails have been misclassified as spam, and b (False Negatives)
are errors where spam mails have been misclassified as ham.

There are a lot of measures concerning the evaluation of spam filter-
ing systems, but most can be computed directly from the contingency
table. Since our collected mailboxes (except for #8) are not representa-
tive concerning the ratio of spam to ham mails (SHratio), we chose two
measures which do not depend on this property: FPrate and FNrate.
FPrate can be interpreted as P (misclassified|true ham), i.e. the esti-
mated probability that a true ham mail is misclassified as spam. FNrate

can be similarily interpreted as P (misclassified|true spam), i.e. as the
estimated probability that a true spam mail is misclassified as ham.
This is a simple way to measure system performance without reference
to SHratio as well as being immediately understandable and follows
the standard nomenclature in the field of spam filtering research. We
note the equivalent terms of ham recall for FPrate, and spam recall
for FNrate, which follow the usual definition of recall from Information
Retrieval literature.

We always report separately FPrate and FNrate for each system and
mailbox – if a single error or accuracy value is needed for comparison
to other studies, it can be computed from these values by formulas (7)
or (8) given the additional value of SHratio.

3. Learning Systems

Here we will describe the three learning systems we investigated, along
with their settings and training methods. All of these systems base
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8 Alexander K. Seewald

their classification decision on mail content including headers. The first
two systems, SA-Train and CRM114 are trained in a non-default way.
For these, only the errors of the current model are trained (Train-On-
Error, TOE), beginning with a reasonable default model. Furthermore,
this training step is repeated until convergence (Train-Until-No-Errors,
TUNE). We were motivated to use this approach because of excellent
results in training our initial filters (Seewald, 2004) and since it has
been reported as working very well for CRM114 by its author in (Yer-
azunis, 2004), on a set of publicly available mailbox collections. We
have however found some weaknesses in this training approach, and
later on we will investigate simpler training approaches as well. The
last system, SpamBayes, is trained in the usual way: by training all
mails from the training set exactly once in a batch-style setting.

Both SA-Train and CRM114 can be viewed as improvements of a
simple Naive Bayes learner such as SpamBayes. SA-Train adds back-
ground knowledge in the form of manually created rules; and CRM114
extends the description language of NaiveBayes from single words to
multi-word phrases with additional modifications concerning probabil-
ity estimates. The main focus of our evaluation is to see whether these
extension are successful in improving on SpamBayes.

3.1. SA-Train

SpamAssassin7 is an open-source hybrid spam mail filter incorporat-
ing a state-of-the-art Naive Bayes learner (similar to SpamBayes) as
well as a set of human-created heuristic rules for spam recognition.
SpamAssassin thus incorporates background knowledge on spam in the
form of heuristic rules as well as a Naive Bayes classification system.
Contrary to a pure Naive Bayes (NB) approach, this makes adapting
the system harder, because it is not clear when to adapt the scores,
train the NB filter, or both. The NB filter is initially disabled and
activated only when 200 mails have been manually trained. Anecdotal
evidence suggests that adapting the NB filter on its own is not sufficient
for reasonable performance - it is also necessary to adapt the scores to
prevent several types of FPs.

Our approach to training SA, SA-Train, can either be viewed as an
application of machine learning techniques to the problem of optimal
score assignment and NB learning within SpamAssassin from an em-
pirical viewpoint; or as a multi-view learning approach (one view is
the model of the NB learner; another is the score assignment) within
SpamAssassin.

7 www.spamassassin.org, DataMation 2005 Product of the Year in the category
Anti-Spam.
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Naive Bayes Variants for Spam Filtering 9

We used version 2.63 of SpamAssassin. As we mentioned, SA is a
hybrid classifier with a set of 900+ heuristic rules, and a NB learner.
Each heuristic rule has a weight (score) attached. Rule matching is
binary and based on perl regular expression matching. The sum over
the scores from all matching rules is the full score for the mail. A user-
definable threshold is used to determine if a mail is to be classified
as spam or ham. The NB learner is integrated into the ruleset as a
small set of pseudo-rules (e.g. BAYES 00 matches when bayes spam
probability is between 0% and 5%, BAYES 05 when the probability is
between 5% and 10% etc.), also with an attached user-definable score
for each pseudo-rule. A genetic algorithm has been used by the authors
of SpamAssassin to optimize the scores for all the rules and the NB
pseudo-rules on a large corpus of spam and ham mails, and gives the
initial score set, and is available within SpamAssassin.

The initial NB model for SpamAssassin was taken from a model
which has been sporadically trained by the author prior to June 2004
on his own spam and ham mails. An initialization was necessary since
the NB model is not activated unless it contains at least 200 mails.
Autolearn, which automatically trains some spam and ham mails, has
been switched off. The auto whitelist, which averages mail scores over
several mails from the same sender, was also switched off.

The training procedure was inspired by Train-Until-No-Errors (TUNE)
which was found to work best in (Yerazunis, 2004). TUNE is essentially
a repetition of Train-On-Error (TOE), which in each steps trains the
training set errors encountered for the previous model, thus converging
towards a model with low training set error. Since initially no training
set errors are known, we start with score learning. The meta-data con-
sists of the known mail classification (spam or ham, from training set)
and the set of SA rules (including BAYES pseudo-rules) which match
the corresponding mail. Each rule is represented by a binary attribute
with value 0 for nonmatching and 1 for matching rules. For such a linear
binary classification task, a linear Support Vector Machine is the most
appropriate system. We used an open-source implementation of SVM
based on the SMO algorithm8 with a linear kernel (K(x, y) =<x.y>),
and the complexity parameter lambda was set to the default value
of 1. No normalization of the input values was performed, and no
parameter optimization was done. The trained system gives both the
weights (score) for each rule as well as the threshold, yielding a full
classification model. After training, the training set errors are counted.
A training set error of zero (i.e. a perfect model) yields an early exit

8 weka.classifiers.functions.SMO, from the WEKA data mining suite, www.cs.

waikato.ac.nz/~ml/weka. Settings were -E 1 -N 2 -C 1.
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10 Alexander K. Seewald

as no further TOE training can be done. A nondecreasing training set
error after the first three cycles also yields an early exit. This was added
to prevent overfitting in the presence of class noise.

The training set errors from the SVM model are afterwards trained
incrementally via the NB learner (i.e. via sa-learn), and the process
is repeated from SVM score learning onward. Again, we repeat un-
til no training set errors are found (which happens in 72.8% of the
runs), or until the errors do not decrease after the first three cycles.
The first three cycles are intended to give the system time for initial
progress. During our early experiments, we found that the error some-
times slightly increases in the second cycle, but still falls below the
initial value (from the first cycle) on the third or fourth cycle. At the
end, a user prefs setting file and a NB model for SA is available that
can replace the default settings and model. Note that the NB model is
additive and will include all unique mails that were misclassified in any
cycle. Duplicate misclassified mails are learned only once since sa-learn
ignores requests to train a previously trained mail again.

Earlier experiments with this kind of system are reported in (See-
wald, 2004). Multiple runs of V6 are most similar to our system, but
we have found that spam collections by a single user are not sufficient.9

This family of systems have been extensively tested at our institute,
and user feedback has been very positive.

3.2. CRM114

For CRM114, we similarily used Train-Until-No-Errors (TUNE, (Yer-
azunis, 2004)) modified with an exit on nondecreasing errors after the
first ten cycles or achievement of a perfect model (i.e. without training
set errors). TUNE repeats Train-On-Error (TOE, see above) until a
perfect model has been learned. This does not always happen, so the
exit condition is essential to prevent endless looping. The exit condition
is not checked in the first ten cycles to allow initial progress, similar to
simulated annealing. CRM114 uses far fewer mails for training in TOE
and therefore converges more slowly than SA-Train, which motivates
the higher number of cycles until the nondecreasing error condition is
checked. The training procedure is somewhat similar to SA-Train and
also follows Yerazunis’s recommendations (except for the early exit
conditions which were added by us).

9 One new user (i.e. one whose mails were not part of the training set) reported
a FN rate of 50% – thus half of this user’s spam was unknown to the pretrained
system. It should be noted that the FP rate was always reported to be 0, and is
thus expected to be quite small. Training on pooled mailboxes from multiple users
improves on this – one new test user was astonished and told us that the pooled
model offered a much lower FN rate than his own locally trained model.
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Naive Bayes Variants for Spam Filtering 11

CRM114 is based on Sparse Binary Polynomial Hashing with a
Bayesian Markov Model. It is a generalization of NB filtering that
tries to estimate propabilities for phrases instead of single words, where
longer phrases are given more weight. Details can be found on CRM114’s
homepage, crm114.sourceforge.net.

The mails were cut off at 1,000,000 size (i.e. only the first MB from
each mail was used for training) because the system exhibited erratic
runtime behaviour for larger mails. A cutoff at 10k as proposed by the
author of CRM114 was tested and found to reduce performance. Still,
erratic runtime behaviour for the large noiselevel experiment forced us
to cut off at 10,000 bytes for the noiselevel and concept drift experi-
ments.10 Additionally, three mails had to be manually removed from the
training set (only for the time-dependent evaluation of CRM-simple)
after training these mails took more than one hour per mail. Normally,
training a mail takes a few seconds.

3.3. SpamBayes

For SpamBayes11, we trained the full training set once. The default
thresholds of 0.9 for spam mails and 0.2 for ham mails classified a large
proportion of mails as unclear (i.e. neither ham nor spam, undecided).
A threshold of 0.5 is a sensible a priori choice for training sets with
equal number of ham and spam mails (SHratio=1), and was therefore
initially adopted. SpamBayes is based on ideas by (Graham, 2003), and
is a Naive Bayes learner. It is the simplest system presented here.

Naive Bayes learning in this domain roughly works as follows: Split
each mail into a set of words via a tokenizer (for mail headers and
body separate tokenizers are usually used), and count how often each
word appears in ham mails resp. spam mails. These counts are then
used to estimate P (wx|ham) and P (wx|spam) for all words wx (e.g.
by frequency with Laplace correction to prevent the occurrence of
zero probabilites, or with more complex formulas). By applying Bayes’
Rule, it is possible to estimate the probability of a new mail being
ham, i.e. by computing the product of all P (ham|wx) and the prior
probability P (ham), and also the product of all P (spam|wx) and the
prior probability P (spam), followed by renormalization of these two

10 According to experiments which are not shown, this may modify the FP rate
of these experiments by factor 1.56±1.03, and the FN rate by 0.62±0.43 (averaged
over mailboxes #1-#7). Note that the FP rate increases by the same factor as the
FN error is decreased which hints that the differences can be explained as differences
in the absolute values of the confidences (equivalent to a different default threshold)
rather than differences in the underlying model. We would therefore still expect the
FP/FN rate trade-off curves to be similar.

11 spambayes.org, (Meyer & Whateley, 2004)
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12 Alexander K. Seewald

Table 2. Mailboxes used for our evaluation. Number of hams
(#H), spams (#S), and the dates of the received mails are
shown, separately for ham and spam mails. Dates were recon-
structed from Received: Headers and may not be accurate for
spam mails. Spam mails were collected over short time spans (at
most 2-3 weeks), and the date ranges do not always reflect this
correctly.
mbox number of mails SHratio received during

no. Ham Spam Ham Spam

#1 15248 3319 0.21 12/88-07/04 01/97-07/04

#2 8982 10605 1.18 01/02-09/04 02/02-09/04

#3 3608 568 0.15 09/97-06/04 06/04-06/04

#4 2167 1123 0.51 04/96-06/04 06/04-06/04

#5 1589 3083 1.94 07/02-07/04 02/03-07/04

#6 7539 1838 0.24 09/99-07/04 05/04-07/04

#7 3278 3229 0.98 06/01-06/04 06/04-06/04

#8 1387 22795 16.43 10/04-02/05 10/04-02/05

probabilities (i.e. ensuring that they sum to 1). In SpamBayes, ham
and spam probabilities are combined via an approach using chi-squared
probabilities which leads to more robust estimates.

Since the previously mentioned systems turned out to be quite sim-
ilar to each other, we have adapted the threshold to each mailbox (for
byMBXTrain), as well as one uniform threshold for the model trained
by pooling data from all mailboxes (allTrain). SpamBayes performs
similar to the other systems after this normalization while before it
performed significantly better in FP rate and significantly worse in FN
rate. Among the eleven thresholds 0.0-1.0 (in steps of 0.1), we chose the
one that minimized mean squared error versus the mean of the average
performance (over ten runs) from both SA-Train and CRM114. The
chosen threshold was 0.1 for allTrain; and 0.1, 0.4, 0.3, 0.4, 0.0, 0.0
and 0.3 for mailboxes #1-#7 and byMBXTrain. FP and FN rate MSE
were weighted equally. Using mean absolute deviation yields the same
thresholds. These threshold were used for all experiments except where
otherwise noted.
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4. Mailbox Collections

The collection and verification12 of spam is time-consuming and error-
prone. Because of the severity of our spam problem, we were motivated
to collect seven distinct mailboxes consisting of ham and spam mails
from colleagues at our institute from June 2004 onwards.

We created mailboxes #1-#7 by merging mails recently predicted
as spam by SpamAssassin 2.6313 with spams collected and submitted
by the users themselves over a short time span (1-3 weeks), separately
for each user. SpamAssassin markup and headers were removed. The
ham mails, on the other hand, were collected from past ham mails
within the user’s mail archive. We removed all mails which were sent
by the user himself since these are not incoming mails and therefore
not suitable for training (except those also sent to the user via Cc or
Bcc). The structure of ham mails is likely to change less over time
than spam mails (i.e. less concept drift), so a combination of recent
spam mails and stored ham mails seems a plausible way to get to a
working system fast. This is also the reason why the SHratio of these
mailboxes differs from what a typical user at our institute experiences
in his daily life (except #8, see below). Anecdotal evidence indicates
that this approach does indeed lead to well-performing models.

We have taken an effort to clean the mailboxes, inspecting every
training set error of an earlier learning system to see whether the
mail was assigned the wrong category. An overview of the mailboxes,
including date ranges for ham and spam mails, is in Table 2. As you can
see, the mailboxes are somewhat spread out in time, and while models
trained using this data work very well, we cannot investigate concept
drift issues here as the collection of these mails does not accurately
reflect a true second-by-second snapshot. On the other hand, second-
by-second snapshots of arriving mails would have to be collected over
several months by dozens of users to get as many ham mails as we have
collected here, which would have been infeasible for us.

To be able to investigate time-dependent performance, we have col-
lected another mailbox, #8, which is the set of all ham and spam
mails received by the author between 4th of October 2004 and 13th
February 2005. These are a realistic snapshot of the mails received at
the institute. In this time period the author held three lectures at the
Medical University in Vienna, Austria. Each mail was checked at least

12 Error rates for manual verification of 0.45% (true ham), and 0.64% (true spam)
were reported by (Cormack, 2004) for a SHratio of 4 and a corpus of 50,000 mails.

13 Default settings without bayesian model. SA has been installed at our institute
since 2002, has a small FP rate but an FN rate of around 50%, so it is an obvious
choice for bootstrapping at least part of the spam collections.
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once. The SHratio of 16.4 accurately reflects the proportion of spam by
ham mails received by the author during this period.

We have taken the view of using a very broad spam and ham def-
inition by letting each user choose which mails to classify as spam
and which to classify as ham. A close inspection of the chosen mails
shows that spam includes not only Unsolicited Bulk Email, but also
Phishing mails (which aim to collect credit-card or personal informa-
tion for fraud and identity theft), virus-infected mails, Mail Delivery
Errors for mails which originated elsewere but were sent with a fake
From address and so on. Our ham mails are similarily broad, includ-
ing newsletters, wanted advertisements, mails with large attachments
– including those without text and those with executable, non-virus-
infected14 attachments, confirmation mails to register at a webmail
or mailing list service, status messages from online merchants such as
Amazon, Mail delivery error messages concerned with previously sent
legitimate mails, vacation auto-replies sent as response to legitimate
mails and so on. This makes the filtering task sufficiently realistic to
be of broad interest. No type of mail that users wanted to receive has
been explicitly excluded.

We have decided against using publicly available corpora of spam
and ham mails, since these spam mails are quite old and the ham mails
were taken from a diverse set of users. Most current corpora are not
large enough to be of use. In some cases, their spam definition is very
narrow, and the ham definition is similarily restricted in that no per-
sonal and professional mails are included due to confidentiality issues.
In that respect our mailboxes can be considered more representative
than public collections.

5. Experimental Setup

For training all our learning systems, we have randomly drawn (without
replacement) a roughly same-sized set of spam and ham mails from each
mailbox. The size was chosen so that in the smaller set (either ham or
spam, depending on mailbox), about 50% of the data remained for
testing. The total training size was thus always less than 50% – 25%
on average. Compared to a tenfold cross-validation where the training
size is 90%, this is a more realistic challenge. We were motivated to
use a training size with SHratio=1 since most learning systems are
sensitive to non-uniform class distributions. A ratio of 1:1 for training
is also proposed as preferred class distribution in the documentation of

14 Virus detection courtesy of Symantec BrightMail 6, during experiments de-
scribed in (Seewald, 2005).
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all investigated systems. Our approach is equivalent to undersampling
the larger class, followed by one half of a two-fold cross-validation –
provided the mails removed during undersampling are added to the
test set.

Two training sets were used: For byMBXTrain each mailbox was
trained separately and tested on the remaining mails. For allTrain the
training sets from all mailboxes were combined into a single training set
of SHratio=1, and all the remaining ham and spam mails were used for
testing. The test results are reported for each user separately, except
where otherwise noted.

Training and testing was repeated ten times with different random
orderings of the mailboxes’ mails, unless otherwise noted. Average and
standard deviations of FP and FN rates per mailbox are reported.

All of our learning systems can be made to output confidence values
for each test mail. The default threshold applied to these confidence
values gives the performance of the system. A threshold-independent
way of showing the performance of the system at all thresholds in one
glance is a FP/FN rate trade-off curve. This is essentially a scatter
plot of FPrate vs. FNrate, where each threshold determines a different
data point. For better visualization, 2000 threshold values were uni-
formly sampled from the range of confidence values in the data, and
neighboring points were connected, yielding a curve. The FN rate at
given acceptable FP rate can thus be determined from the curve. This
visualization is similar but not identical to a ROC curve, which would
use TP instead of FN and no logarithmic scales. However, the use
of a logarithmic scale is essential as otherwise the systems could not
be distinguished. TP with an logarithmic scale would have given less
weight to important differentiations (e.g. between 99.9% and 99.99%
TP rate which corresponds to 0.1% and 0.01% FP rate) and was there-
fore replaced by FPrate. The same argument holds for absolute TP (i.e.
a) values.

6. Results

6.1. byMBXTrain

Here we report the results of the evaluation where each mailbox was
trained and tested separately (byMBXTrain). The motivation was to
see which of two factors – learning system and mailbox – have a higher
influence on system performance. The hypothesis was that the mailbox
has a higher influence.

As we can see in Figure 1 and Table 3, all three systems per-
form somewhat similar. Only a few significant differences (i.e. non-
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Figure 1. This figure shows FPrate (on the left) and FNrate (on the right)
for mailboxes #1-#7, and the learning systems. Each model was trained and
tested separately on each mailbox. Error bars are the standard deviation of
test set error over ten runs. 0.025 = 2.5%.

Table 3. This gives the full results of the learning systems for byMBX-
Train. To emphasize differences all numbers are in percent (i.e. have
been multiplied by 100). E.g. 0.178 stands for 0.00178, or around
1:561.

mbox SA-Train CRM114 SpamBayes
no. FPrate FNrate FPrate FNrate FPrate FNrate

#1 0.720 0.796 0.768 0.766 0.538 3.551
#2 0.187 0.317 0.528 0.251 0.343 0.185
#3 1.854 2.047 0.850 0.706 0.012 1.270
#4 0.690 1.195 0.536 0.785 0.240 0.553
#5 1.538 1.791 1.563 2.047 0.643 6.235
#6 0.746 1.916 0.840 1.219 0.817 1.111
#7 0.330 0.799 0.586 0.899 0.146 0.793

Avg. 0.866 1.266 0.810 0.953 0.391 1.957
StDev. 0.611 0.665 0.360 0.561 0.287 2.179

overlapping errorbars) can be found for systems trained on the same
mailbox. The average performance is also quite similar, except for
SpamBayes which has only half the FP rate but double the FN rate.
This is likely to be an artefact of the coarsely chosen tresholds for nor-
malization to the other two systems, and does not signify a superiority
of SpamBayes. The differences between mailboxes are much larger than
the differences between the three learning systems, and the standard
deviation over the runs (shown as error bars in Figure 1) is also quite
high, which explains why there are few significant differences between
systems on the same mailbox. The latter may reflect the small amount
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Figure 2. This figure shows FPrate (on the left) and FNrate (on the right)
for mailboxes #1-#7, and the learning systems. Each model was trained on
pooled data from all mailboxes. Testing was done on remaining mails from
each mailbox that were not used for training. Error bars are the standard
deviation of test set error over ten runs. 0.025 = 2.5%.

Table 4. This gives the full results of the learning systems for allTrain.
To emphasize differences all numbers are in percent (i.e. have been
multiplied by 100). E.g. 0.178 stands for 0.00178, or around 1:561.

mbox SA-Train CRM114 SpamBayes
no. FPrate FNrate FPrate FNrate FPrate FNrate

#1 0.701 0.627 0.507 0.663 0.950 0.531
#2 0.154 0.275 0.198 0.602 0.163 0.238
#3 0.278 1.023 0.185 0.282 0.000 0.635
#4 0.308 0.892 0.129 0.393 0.111 0.464
#5 1.374 1.116 1.827 0.987 1.386 0.965
#6 0.964 1.002 0.648 0.566 0.764 0.730
#7 0.269 0.731 0.378 1.122 0.110 0.781

Avg. 0.578 0.810 0.553 0.659 0.498 0.621
StDev. 0.454 0.291 0.593 0.302 0.536 0.236

of training data that is available for each run, especially for the smaller
mailboxes.

Concluding, in this experiment the differences between the mail-
boxes are much larger than the differences between the learning system,
so there are both easy and hard mailboxes for this task. The differences
between the systems, however, is small: only in few cases is this dif-
ference significant. The initial hypothesis could be confirmed, which
indicates that studies on a single mailbox may not be sufficient.
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6.2. allTrain

Here, we evaluated the performance of a combined system which was
trained on pooled data from all mailboxes (allTrain).The motivation
was to see which of two factors – learning system and mailbox – have a
higher influence on system performance. The hypothesis was that the
mailbox has a higher influence.

Pooling data from all mailboxes to train a single model (allTrain,
Figure 2, Table 4) reduces FP and FN rate and also reduces the varia-
tion over runs (except for mailbox #5). Although it is generally believed
that models which are trained for each user separately yield the best
results, these results demonstrate conclusively that combining training
data is beneficial for at least a small number of users. Anecdotal evi-
dence suggests that a pooled model also offers better performance when
classifying mails for a previously unknown user15 than a model trained
for an arbitrary user. This can be attributed to the greater diversity of
training inputs which improves generalization performance.

According to anecdotal evidence, SA-Train systems trained on pooled
data seem to deteriorate slightly faster over time than per-user models,
for some users. This does not seem to be the case for SpamBayes
systems trained on pooled data.

Pooling data also enables us to determine smaller FP rates (down to
10−4) than would have been possible with utilizing per-mailbox training
and testing. Additionally, a larger sample of diverse mailboxes makes it
more likely that our results hold generally, rather than being an artefact
of a single user’s mailbox.

Concluding, the mailbox is still a factor in system performance, al-
though the mailboxes now give more similar results as for byMBXTrain,
and the differences between learning systems have become less signifi-
cant. This suggests that the systems are able to learn a more balanced
model from pooled data. In neither allTrain nor byMBXTrain could
an advantage for the extensions of Naive Bayes learning (SA-Train and
CRM114) be found.

6.3. Class Noise Level

Noise level susceptibility is an important property of spam filtering
systems as it determines the effort needed to clean the mailbox prior to
training. A low noise level susceptibility is a desired property of filtering
systems, so we have set out to determine the noise level susceptibility
of our three learning systems.

15 Similar FP rate and worse FN rate was usually observed.
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Figure 3. This figure shows FPrate (left) and FNrate (right) at different
noiselevels, for mailboxes #1 to #4 (top-to-bottom).

The noise level experiments were conducted by permuting the train-
ing sets from each mailbox separately. Since each training set contains
roughly the same number of ham and spam mails, we have chosen to
invert the classification for the same number of ham and spam mails
so that the total number of mails with wrong classification equals the
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Figure 4. This figure shows FPrate (left) and FNrate (right) at different
noiselevels, for mailboxes #5 to #7 (top-to-bottom).

desired noise level (half are spams with assigned ham label, and half
are hams with assigned spam label). Therefore we focus on class noise
where additionally the errors are equally distributed between ham and
spam mails. Again, each mailbox and noise level experiment has been
run ten times, and the average and standard deviation over these runs
are shown.

Figure 3 and 4 show the results. In most cases, increasing the noise
level also increases the FP rate, often in at least linear fashion. The
same effect on FN rate is also present but less pronounced. In most cases
SpamBayes breaks this trend and is at first glance much less susceptible
to noise. Since SpamBayes is also the only system that does not use
TUNE-like training procedures and the pattern is otherwise similar
between CRM114 and SA-Train (two very different systems), this is
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highly suggestive of a link between TUNE-like training and increased
susceptibility to class noise.

This is supported by the data: the number of cycles for TUNE
increases monotonically for all mailboxes in relation to increasing noise
level (on average by 62% for SA-Train, and by 16% for CRM114,
both from 0.0% to 2.4% noise (data not shown)). This indicates that
noisier data consistently needs more cycles to attain convergence, and
is therefore more susceptible to worse performance due to overfitting
the (noisy) training data. TUNE training repeats the training of mails
which were misclassified by the system several times. In case the learn-
ing system works reasonably well, mails with noisy classification will
tend to be misclassified disproportionately often, and thus often re-
trained. This biases the model and leads to worse performance. It is
still surprising that the early exit criterions did not help either SA-Train
or CRM114 to attain the same robustness as SpamBayes.

Anecdotal evidence also suggests that training set errors of at least
SA-Train are indeed good indicators for incorrectly labeled mails, and
consequently training set errors encountered while training preliminary
mail collections were usually improperly labeled.

Concluding, the noise leve susceptibility is high for systems with
TUNE-like training (SA-Train and CRM114 ) and low for systems with
normal training (SpamBayes). TUNE-like training approaches seem to
be far more susceptible to class noise, which can be explained by the
nature of TUNE training, as well as being confirmed by the number of
training cycles which increase monotonically in lockstep with increasing
noise level.

6.4. FP/FN rate Trade-Off curves

Up to now, we have compared the overall performance of each system
at a single point, and found few significant differences between systems
on the same mailbox. However, it is clear that FP rate can be traded
off versus FN rate to some extent.16 All the systems tested can be
made to output confidence values that may be tresholded at different
values rather than the default. A useful way to visualize performance
at different thresholds is to plot FP rate versus FN rate. The FN rate
at given acceptable FP rate can be determined from this plot. This
approach allows us to observe differences between the systems which
are not visible by comparing the performance at default thresholds. Our

16 This is most obvious for systems which already incorporate a threshold param-
eter. E.g. a threshold of 0.5 for SpamBayes gives 0.07% FP rate and 1.9% FN rate
– roughly a tenth of FP rate and three times FN rate versus a threshold of 0.1.
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hypothesis here was that, again, there would be no differences between
the learning systems.

To obtain sufficient data for testing, we only show results for the
pooled training sets (allTrain), obtained by storing the confidence for
the classification of each test mail (only the first run of allTrain).
Since we already know that the mailbox is a major factor in system
performance, pooling the test data essentially abstracts from this factor
and enables us to investigate results that are independent of specific
mailboxes. We are aware that the variance of these single run estimates
may be high, but there is no simple way to combine the estimates from
different runs of allTrain as in each run different sets of mails are tested.
A cross-validation is also not possible because of the 1:1 sampling
approach which breaks the essential symmetry of CV. However, we
believe that the large test set ensures that the differences observed
here would also be apparent with a different random ordering of the
input data. We will henceforth call this kind of visualization a FP/FN
rate trade-off curve, or shortly trade-off curve.

Figure 5 shows the trade-off curve for the three tested systems. Each
point on the curve corresponds to a FP (X axis) and FN (Y axis) rate
that can be achieved by choosing a specific threshold. As can be seen,
at the estimated human error rate of around 0.3-1% (Cormack, 2004)
SA-Train, CRM114 and SpamBayes perform very similar. For smaller
FP rates, SpamBayes and SA-Train perform similar while the FN rate
for CRM114 increases significantly. FP rates of smaller than around
10−4 are not achievable with SpamBayes since many mails have a score
of exactly 0 which prevents further trade-off of FP against FN rate in
this area.

(Cormack, 2004) found that different internal thresholds explains
most of the differences between spam filtering systems. Contrary to his
findings,we already observed very little differences at default thresh-
olds in the previous sections, but the trade-off curve has enabled us
to find a previously not noted difference: At one glance, we see that
CRM114 is only competitive to the other two systems for a small range
of thresholds including the default threshold of 0 for that learner. Our
initial hypothesis – that we would again find no differences between
systems – has been disproved. On the contrary, we found that one of
the investigated extensions to Naive Bayes, CRM114, actually performs
worse than its ancestor.

6.4.1. Training procedures
The TUNE (Train-Until-No-Errors) training procedures we used up to
now for SA-Train and CRM114 are rather costly. It remains to be inves-
tigated whether the same results could be obtained with less training.
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Figure 5. This figure shows a FP/FN rate trade-off curve for the three tested
systems. SpamBayes returns many mails with confidence values of 1.0 and
0.0, and is therefore cut off on the left and right.

Also, in the light of higher noise-level susceptibility of TUNE training,
we might end up with a faster and better model. So we investigated two
ways to reduce the computational effort of TUNE as well as make it less
susceptible to overfitting. Additionally, since our main motivation was
to check whether the learners SA-Train and CRM114 have improved
on SpamBayes, we needed to make sure that the similar results of the
three systems were not due to the difference in training methodology.

TUNE training involves repeated training of training set errors until
convergence. On simplification is therefore learning the training set
errors only once which was already named Train-On-Error, or TOE.
This is equivalent to a single cycle of TUNE. The order of the mails
in the training set is arbitrary but fixed. TOE is somewhat related
to incremental training of spam filters (where the mails would be in
chronological order) and thus to a widespread method to train spamfil-
ters incrementally. For SA-Train, the SVM weights need to be learned
twice: at the beginning to get the full model in order to determine the
training set errors, and after NB learning to get a weight vector for the
final model. TOE alone should be around an order of magnitude faster
as the maximum number of cycles for TUNE was set to 15.

The other was learning all mails and not only the training set errors,
which we called simple. For SA-Train, the full training set was learned
via NaiveBayes, and afterwards SMO was applied. In that case, the
initial NB model was not needed as for all mailboxes more than 200
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Figure 6. This figure shows a FP/FN rate trade-off curve for CRM114 (left)
and SA-Train (right), for the three training methods TUNE, TOE and simple.

training mails were available. It should be noted that this simpler sys-
tem was actually at least two orders of magnitude slower for CRM114,
since in that case training is much more costly than testing, and TOE
reduced the number of mails to be trained by two orders of magnitude.
For SA-Train, simple was only slightly slower than TOE.

Figure 6 shows the influence of the training method on the trade-
off curve for CRM114 and SA-Train. As can be seen, the influence on
CRM114 is large, with the curve almost steadily improving from simple
to TOE to TUNE. Surprisingly, the effect on SA-Train is quite small
(except for high FP rates greater than 10%), so the simple training
method seems to be sufficient for SA-Train.

Concluding, our results disprove the notion that SA-Train and CRM114
using simpler training methods would outperform SpamBayes, since in
all cases the performance when trained with simpler methods did not
improve significantly. The results also support (Yerazunis, 2004) finding
that TUNE and TOE improve performance of CRM114. However, this
is not the case for SA-Train so TUNE and TOE seem to be less useful
as a general technique. In the light of higher noise-level susceptibility,
care should be taken when applying the TUNE training procedure, and
comparison to simpler training methods is essential.

7. Concept Drift

Up to now, we have mainly ignored concept drift, i.e. the fact that
the true model generating ham and spam mails changes over time.
We have argued that the mail collection ensures datasets with little
concept drift (except mailbox #8). We also note that the error for
SpamBayes on the representative mailbox #8 (averaged over first two
weeks: FPrate=0.532%, FNrate=0.956%) is within the 99% confidence
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interval of the earlier time-independent estimate (see Table 4, Avg. ±
2*stDev). This is also the case for the FN rate of CRM114 and SA-
Train (both FP and FN rate), but not for the FP rate of CRM114 which
is one order of magnitude lower versus mailbox #8. We may tentatively
conclude that time-invariant error estimates from our mailboxes #1-
#7 are usually valid on new mails – even from an unseen but related
mailbox – for at least a limited time period.

Concept drift must be analyzed over longer timespans. E.g. in (See-
wald, 2005) we found that performance estimates of current ready-to-
use systems are only valid with reasonably recent mails, and that the
FN rate increases sharply for older mails – which reflects the major
effort of the system’s developers to account for current spam mails at
the expense of historical spam mails.17 The usual tendency for learning
systems is just the opposite: Spam classification tends to get harder in
time, once the model has been trained and remains fixed.

We used mailbox #8 (see Table 2) for these experiments. While #8
on its own is not large enough for training because it contains too few
ham mails (only 1387 vs. 27163 mails for the full model), it is sufficient
to test two aspects of our trained systems: One, we can determine how
well the system generalizes to an unknown mailbox as no mails from
the user corresponding to #8 were used during training (except for the
initial model of SA-Train). Two, we can determine how fast the trained
systems deteriorate over time. Additionally, we can evaluate continuous
learning approaches by simulating different ways to learn the incoming
ham and spam mails in chronological order, and compute FP and FN
rate for the continuous learning system as it evolves over time.

One disadvantage of this approach is that we have to check two
different effects at once. However, as we already noted, the time ranges
of spam and ham mails within each of our collected mailboxes are
too different to be used for that purpose. Pooled mailboxes (allTrain)
cannot be used, since the earliest ham mails from the pooled mailbox
would come mainly from a single user. An additional complication is
the 1:1 sampling, which would force us to split ham and spam mails
each into a different number of folds. This complicates training, testing
and combining the results. We also note that our intention was to create
a trained model that generalizes well to unknown users, and therefore
the more challenging analysis of two meshed effects is in our interest.

#8 is both temporally separated as well as collected from a different
user as #1-#7. Each learning systems was trained on mailboxes #1

17 This effort can also be seen in the enormous bandwidth requirements: for
Symantec BrightMail, about 700 megabytes of updates were received weekly during
our three-week experiments in (Seewald, 2005)
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Figure 7. This figure shows FP and FN rates (left: FPrate, right: FNrate) on
mailbox #8. Week numbers are measured from the start of #8, only full weeks
are shown (i.e. the last partial week was removed)

to #7 except the ham mails from #1 which were removed to obtain a
SHratio=0.87 and thus reasonably near 1.

7.1. Deterioration over time

Here we focus on the deterioration of FP and FN rate over time for
each learned model. This is an important property of learned spam-
filtering systems, as it determines the effort that is needed for batch or
continous retraining to sustain a desired level of filtering performance
indefinitely.

While we could not find any advantage for the more complex learn-
ers until now, it could be that SA-Train and/or CRM114 offer more
stable performance over time and thus deteriorate less even though the
absolute performance and trade-off curves are remarkably similar to a
large extent.

7.1.1. Weekly FP/FN rate
Deterioration can be measured by weekly FP/FN rate, but also by
comparing the FP/FN rate trade-off curve from the first half and the
second half of the timespan corresponding to #8. We will compute and
contrast both measures as well as comparing them to the FP/FN rate
trade-off curves from allTrain evaluation.

Figure 7 shows the FP and FN rates over time for each model. The
FP rate shows no degradation, but fluctuates quite strongly. By FP
rate, SA-Train is best, followed by SpamBayes and CRM114. As can
be seen, SpamBayes shows the smallest FN rate degradation over time.
This indicates that SpamBayes has learned a model of spam which
degrades very slowly. SA-Train performs very well in FP rate and quite
good in FN rate initially, but the latter degrades rapidly. Retraining
at around week 14 would clearly be necessary here. CRM114 performs
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badly in FP rate but does not degrade, and its FN rate starts low but
degrades faster than the one by SA-Train. This hints that the default
treshold might not be appropriate at least for CRM114, so we continued
the analysis with trade-off curves.

7.1.2. FP/FN rate trade-off curves
We computed the curves over the first ten weeks, and over the remain-
ing nine weeks. Additionally, we added the curves from Section 6.4
to allow a comparison to the earlier time-independent estimate. Note
that we would expect the new estimates to perform worse, as no mails
from the user corresponding to #8 were part of the training set (except
for SA-Train, where a small set of earlier mails from the same user as
#8 were used for the initial Naive Bayes model). This is the cost of
generalizing to previously unseen mailboxes.

Figure 8 shows the trade-off curves for our three learning systems.
The good agreement between the allTrain curve and the curves es-
timated from #8 for SA-Train is most likely due to the initial Naive
Bayes model of SA-Train which was partially based on user #8’s mails.
For the other models, the agreement is less good. For all systems but
SpamBayes, the curve over weeks 10-18 performs worse than the one
from weeks 0-9 which is to be expected if the techniques used by
spammers succeed in defeating spam filter systems. Most surprising is
that for SpamBayes, additionally to showing little effect of time on the
FN rate, the FP/FN rate trade-off curve actually improves over time,
hinting that the learned model is exceptionally resistant to changes in
spam mail distribution. Since SpamBayes is also the simplest system
we have tested, this is strongly suggestive of overfitting in the two
other systems. We note that both for SA-Train and SpamBayes, the
curve estimated on the time-dependent data is shaped differently than
the one from allTrain: when we compare the area between 0.001 and
0.1 FPrate, it is convex rather than concave. For CRM114, the same
curve appears but is shifted along the FP rate axis which corresponds
to a geometric increase in FP rate that is also observed in the time-
dependent estimate of classification performance (see Section 7., first
paragraph).

7.1.3. Training procedures
As would be expected from the results in section 6.4.1, the training
procedure has little influence on SA-Train, and the simplest training
methodology already works reasonably well. However, the trade-off
curve of training methodology simple, which is the only one that does
not depend on the initial Naive Bayes model which contains earlier
mails from the same user as #8, is noticeably worse, which confirms our
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Figure 8. This figure shows FP/FN rate trade-off curves for SA-Train,
CRM114 and SpamBayes. The allTrain curves are from section 6.4; the two
others curves are taken from weeks 0-9 resp. 10-18 of #8.

earlier suspicion that SA-Train’s good agreement is due to this fact. The
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other curves are very similar over the different training methodologies.
This confirms that training methodology has less influence on SA-Train.

For CRM114, the shape of the FP/FN rate trade-off curves for the
three training methodologies are similar to those curves computed via
allTrain, provided we again abstract from the worse performance (i.e.
the shift along the FP rate axis). The classification performance at
the default threshold for training procedures TUNE and TOE is again
similar, but simple yields a FN rate rate in excess of 80% and a very
low FP rate rate. This indicates that the default threshold may be
inappropriate in that case, or that for CRM114-simple, the training
data needs to be very near a SHratio of 1 (the SHratio for the training
data in this subsection was 0.87). Data is this section is not shown.

7.1.4. Conclusion
Concluding, the results of time-independent evaluation still apply to
time-dependent evaluation for at least an initial time period. The trade-
off curves are shaped differently (convex vs. concave), which is not due
to the expected deterioration in applying the model to an unknown
user. For SA-Train, the initial model included mails from the user of
#8, and the curve was correspondingly more similar but still convex in
the middle third of the X axis. We speculate that the concept drift is
shifting the curve towards higher convexity in time rather than shifting
it, but our data is insufficient to show this clearly. CRM114 appears to
react differently: it shows a clear horizontal shift for allTrain to mailbox
#8 (i.e. evaluation on an unseen user’s mailbox), and a vertical shift
for the first nine weeks to the last ten weeks. In each case, SpamBayes
– rather than the more complex systems – deteriorates less over time.
Thus, again we find no advantage in using the more complex systems.

7.2. Continuous (incremental) training

As an encore we tested several continuous training methodologies. Since
both SA-Train and CRM114 fail to improve on SpamBayes, we only
tested how the SpamBayes learning model can be incrementally up-
dated. This is an alternative to retraining every few months, i.e. the
batch-style training which has been used throughout this paper. While
batch-style training combined with our approach to mail collection is
very useful to create an initial model, incremental learning is useful
to make spam filtering updates more timely and less costly. Instead
of batch-training a new model every few months, continuous learning
trains misclassified mails incrementally as they appear. This is remi-
niscent of TOE training, and also a common approach to train spam
filters incrementally.
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We have chosen to evaluate only the best tested system, SpamBayes,
on independent test data from mailbox #8. As can be seen from Ta-
ble 2, #8 is both temporally separated as well as collected from a
different user as #1-#7. SpamBayes was initially trained on mailboxes
#1 to #7 except the ham mails from #1 which were removed to ob-
tain a SHratio close to 1. An evaluation of the two other systems was
deemed to be unnecessary: SA-Train is expected to perform very similar
to SpamBayes, and CRM114 is not expected to perform better than
SpamBayes either and is furthermore only competitive for a small range
of thresholds. The worse shape of the trade-off curve combined with the
much worse FP rate performance makes it an unsuitable candidate.

This focus on a single system allows us to investigate continuous
learning in detail: Complementing the batch-style training and test
which we have used up until now, we shall now compare several variants
of Train-On-Error to see whether such a continuous training approach
biases FP and/or FN rate. We will investigate three such settings.

− AlwaysTOE trains each FP and FN error instantly after the mis-
classification appears. This is optimal from point-of-view of the
learner, but is rather costly since all mails classified as spam have
to be checked instantly, which makes the spam-filter useless.

− NoHamTOE trains only the FN errors. This reflects the behaviour
of users which do not look through their spam folder at all and so
miss all false positives – a common behaviour for users of spam
filtering systems, and also a desirable behaviour from an applica-
tion point of view since it does not involve continuously checking
the spam filter.

− None does not train any errors at all. This is even more desirable
than NoHamTOE, but may work only for a limited period.

In all three cases, the mails from #8 are presented in the order in which
they were initially received. The FP and FN rates are averaged over full
weeks to prevent artefacts due to weekday-dependencies. We will focus
on the changes in FP and FN rate due to these different continuous
learning settings to see what effect they have in practice.

Figure 9 shows the results. As would be expected, AlwaysTOE has
the lowest FN and FP rate overall. However, even None manages to
keep a FN rate of smaller than 2% over the full 18 weeks while the FP
rate fluctuates wildly around the average of 2%. Note that NoHamTOE
has only a small influence on the FP rate which is over most stretches
exactly the same as for None while it improves the FN rate almost as
much as AlwaysTOE, so it seems that NoHamTOE combines the best
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Figure 9. This figure shows FP rate (left) and FN rate (right) for mailbox #8,
averaged over each week, for the three continuous training settings.
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Figure 10. This figure shows FP rate (left) and FN rate (right) for mailbox
#8, averaged over each week, for the three continuous training settings, and
a threshold of 0.5 for SpamBayes.

of both approaches. The high FP rate is rather unsatisfactory, and so
we repeated the experiment with a threshold of 0.5 for SpamBayes – a
reasonable setting for a training file with approximately equal numbers
of ham and spam mails – which strongly reduces FP rate at the cost
of FN rate.

Figure 10 shows the results. Now, all three continuous training set-
tings have exactly the same FP rate. Note that only two ham mails
were misclassified in week 9 by all systems, so over the time period
there seems to be no deterioration of ham error – with or without
training, and even when training only spam errors, of which there are
a few hundred. This is an excellent result.

The FN rate, however, deteriorates fast for the None model, but
stays about constant at around 2-3% for AlwaysTOE. NoHamTOE
almost exactly matches AlwaysTOE and thus overlaps in the figure. In
short, NoHamTOE seems to be the best continuous training setting –
if the learner has been initialized and tested to achieve a sufficiently
small FP rate. A high FP rate (as in the previous example with thresh-
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old=0.1) will deteriorate much faster and necessitates looking at each
predicted spam mail. We still propose utilizing other approaches to
estimate FP rate regularily to prevent an deterioration over longer
periods, but sampling every 2-4 months should suffice.

8. Related Research

(Cormack, 2004) presents a comprehensive study on eight months of
personal mail. Their evaluation is concerned with sequential training
efforts where we are interested in determining performance on larger
corpora. Concerning evaluation measures, their ham misclassification
fraction hm is equivalent to our FPrate, and their spam misclassification
fraction sm is equivalent to our FNrate. They report a final human error
rate for FPs of 0.45% and for FNs of 0.64% which is based on a sample
of around 50,000 mails.

(Meyer & Whateley, 2004) present the SpamBayes system. They
note that a SHratio of 1 works best, which is what we found as well, and
that incremental training takes much longer to converge than batch-
style training. They also note that ham and spam collections should
overlap in time as the system would otherwise be inclined to distinguish
them by the year token in the Date: header which would yield very bad
results on unseen data.

(Yerazunis, 2004) proposes TUNE and TOE-style learning approaches,
and reports results for several types of learning spamfilters (including
CRM114) on publicly available mail collections. His results are ham-
pered by the non-representative nature of the public collections, which
may explain that we cannot replicate his finding on the superiority of
TUNE+CRM114 here. However, he also notes that training spam filters
for several users via pooled mailboxes may work quite well, which we
also found. He also proposes some behaviour-based features for filtering
spam.

(Sakkis et al., 2001) reports that a scheme for combining classifiers
known as stacked generalization improves the performance of spam
categorizers. While the use of ensembles is similar in spirit to Spa-
mAssassin, their ensemble is a set of classifiers trained on bag-of-word
representations of mails while SA’s ensemble (human-created rules and
a Naive Bayes model) is expected to be more diverse than their en-
semble which differs only in the choice of learning algorithms at the
base level. Diversity is one of the key elements for successful ensemble
learning. However, the SA-Train ensemble is not able to improve on a
simple Naive Bayes learner in a setting somewhat similar to stacked
generalization.
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Our results disagree with (Androutsopoulos et al., 2000) who found
that current spam filters are not suitable for deleting messaged classified
as spam. Assuming a human error rate of 0.45% FP rate and 0.64%
FN rate (Cormack, 2004), at least one of the three systems tested
here perform comparably. Since minimizing FPs is more important to
most users, clearly almost all of the tested systems are acceptable with
properly set treshold. They used Total Cost Ratio with a simple cost
of 1000 for all false negative errors while we reported FP and FN rate
separately, and also showed the trade-off curve between FP and FN
rate in a different form.

(Sergeant, 2003) has described an approach to use Genetic Algo-
rithm techniques to optimize rule scores within SpamAssassin. Their
approach differs from ours in that they ignore the Naive Bayes model.
For SpamAssassin 3.0.2., the developers have switched to a percep-
tron for determining useful default settings for rule scores, so they
are only a small step away from a linear support vector machine –
arguably the best algorithm for learning a linear discriminant model in
a classification setting.

(Hidalgo, 2000) reports a comparative evaluation of several machine
learning algorithms on the text of messages and also a set of 9 heuristics.
The reported improvement due to the use of heuristics is modest. Our
approach SA-Train uses 900+ heuristics from SpamAssassin but also
fails to improve on a simpler Naive Bayes learning system.

9. Conclusion

We have evaluated two extensions of Naive Bayes learning (SA-Train,
CRM114) as well as a simple Naive Bayes learner (SpamBayes), on a
set of around 65,000 ham and spam mails collected from seven users,
plus a set of ham and spam mails from an eighth user. We draw the
following conclusions from our experiments. Conclusions 1-3 are of a
practical nature. They indicate what we have learned concerning how
to train well-performing spam filters with minimal effort. Conclusions
4-6 are concerned with vulnerabilities of TUNE training (due to (Yer-
azunis, 2004)). Conclusion 7 states specific weaknesses of SA-Train
and CRM114, and Conclusion 8 states specific weaknesses of CRM114
which we have found during our investigations.

1. Our approach to mailbox collection – combining a set of recent
spam mails with historical ham mails – allows fast creation of large
mailboxes for spam filter training. These seem to contain very little
concept drift and are very useful for training any learning spamfilter
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among those investigated with small differences in performance (at
default thresholds) and the trained models are stable over several
months. By Ockham’s Razor, the simplest system, SpamBayes,
should be preferred.

2. For high ratios of spam to ham mails, representative mailboxes will
have a very biased class distribution. Our approach of 1:1 sampling
has proven to yield very good spam filters even when the true class
distribution is very biased (e.g. 1:16.4 was observed by the author
for #8). Our approach to mail collection (see above) allows control
over training set SHratio and a value of 1 should therefore be aimed
for.

3. Pooling multiple mailboxes for training reduces the variance of
estimates and does not reduce performance significantly. In some
cases, the performance of the combined system is even better than
that of a model trained for a specific user. The generalization to
unknown users may also be improved through higher diversity of
the training data.

4. The TUNE training approach works well on CRM114 for which it
was developed and improves classification performance as well as
the shape of the FP/FN curve.

5. For SA-Train, TUNE training was found to have only marginal
influence on classification performance and the shape of the FP/FN
curve while strongly increasing runtime. Thus, TUNE should not
be expected to generally improve performance.

6. TUNE training for both CRM114 and SA-Train increases the sus-
ceptibility to class noise in training data, which is to be expected
as TUNE trains each erroneously classified mail repeatedly. Spam-
Bayes, which does not use TUNE training, shows no such degrada-
tion. The better performance of CRM114, and the similar perfor-
mance of SA-Train, is thus offset by the higher error rates in the
presence of noise. This pattern is apparent on almost all mailboxes.

7. Both SA-Train and CRM114 show a marked deterioration in spam
error rate over time. SpamBayes does not. In this case, the TUNE
training procedure is not responsible for the worse performance of
SA-Train and CRM114. We suspect that the higher number of pa-
rameters available to both systems leads to overfitting and thus to
a less stable model which is compromised faster. The deterioration
of SpamBayes may only be clearly apparent over a longer period
than the 18 weeks which we have studied.

spam-journal.tex; 5/09/2005; 21:11; p.34



Naive Bayes Variants for Spam Filtering 35

8. When comparing classification performance, all three tested sys-
tems perform equally well (after normalization of SpamBayes –
before normalization SpamBayes performs uniformly better in FP
rate and uniformly worse in FN rate). However, a look at the per-
formance dependence on the threshold level shows that CRM114 is
only competitive to SA-Train for a small range of thresholds which
include the default one. The SpamBayes curve is similar to the SA-
Train curve but is cut off at a FP rate of 10−4. All these observations
are also valid when SA-Train is trained in a more simple way similar
to SpamBayes (i.e. without TUNE or TOE).

Overall, the addition of background knowledge to a Naive Bayes learner,
SA-Train, as well as the extended description language of CRM114, has
failed to improve Naive Bayes learning significantly, even with refined
training methods such as TUNE and TOE. Rather, the perceived sim-
ilarity to the Naive Bayes learner SpamBayes is highly suggestive and
indicates that the NB learner is responsible for almost all of the classifi-
cation performance of SA-Train. For CRM114, the extended description
language (phrases instead of words) has had negative impact on perfor-
mance for a large range of thresholds. The much higher deterioration
over time of both systems vs. SpamBayes may be due to overfitting,
since a much higher number of parameters need to be fitted from the
same data (both the NB model’s probabilities and the rule scores; resp.
probabilities for all phrases up to a certain length rather than words).

The similarity between the three tested systems, taken together with
the findings of (Cormack, 2004) who found very similar performance
on a larger set of spam filtering systems, indicate that content-based
approach may well have reached a ceiling. More complex approaches
fare worse than simple approaches in noise-level susceptibility and de-
terioration over time while their performance in a time-independent
evaluation is remarkably similar. Even commercial systems that process
several million EMails per month such as Symantec BrightMail do not
offer a better performance (Seewald, 2005).

Additional improvement may be expected from other sources of in-
formation apart from content, e.g. behaviour-based filtering approaches
which take the behaviour of the sending mail server into account. Com-
bining these and other information sources into a single learning system
might improve the filtering performance beyond the current ceiling.
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