
Digits - A Dataset for Handwritten Digit Recognition

Alexander K. Seewald

Austrian Research Institute for Artificial Intelligence
Freyung 6/6, A-1010 Vienna, Austria

alexsee@oefai.at, alex@seewald.at

Abstract

In this paper we describe the preprocessing
steps for a contributed digit dataset, going
all the way from a physical page of paper –
filled out by students – past digital scanning
to computerized segmentation, resizing, and
blurring. Surprisingly, very little expertise
can be transferred from other datasets to our
new dataset for a state-of-the-art SVM classi-
fier, although the performance for each sepa-
rate dataset is acceptable. This may indicate
that at least SVM, and possibly also other
learners, are sensitive to small changes in pre-
processing, emphasizing the need not only to
create benchmark datasets for handwritten
digit recognition, but also to document their
preprocessing as detailed as possible and aim
to replicate that as well. Our work is a small
step in that direction.

1 Introduction

Handwritten digit recognition is a major research
topic. E.g. [3] gives a comprehensive survey of the
field including major feature sets, learning algorithms,
and datasets. Contrary to OCR which focusses on the
recognition of machine-printed output, where special
fonts can be used and the variability between charac-
ters with the same font, size, and font attributes is
reasonably small, the inter-person as well as the intra-
person variability of handwritten digits is surprisingly
high. This makes the recognition problem far more
challenging. On the other hand, the moderate number
of classes1 makes it more amenable to be rephrased
as a classification task even with a relatively small
amount of training data.

110 rather than more than 64 for lowercase and upper-
case characters plus digits and comma, dot, colon etc..

In the process of holding a lecture for students at the
Medical University in Vienna, we chose to let stu-
dents contribute and analyze their own dataset for
handwritten digit recognition. An input page was de-
signed on which each student was to write 100 digits,
equally distributed among zero to nine. Additionally,
each student chose whether to contribute his digits to
the public domain, for further experiments by the au-
thor under non-disclosure to third parties, or not con-
tribute them at all. 44 students contributed their input
pages, and of these 37 contributed them to the pub-
lic domain. The latter data has been made available
at alex.seewald.at/digits, while we continue using
the larger full data for our own experiments. We are
looking forward to create similarily-sized datasets each
year, provided the lecture will continue to take place.
Others are cordially invited to contribute as well –
all our code is available freely for non-commercial pur-
poses. Just send us a mail so we know what you intend
to do with it, and see if we can help.

We report preliminary results on our and two other
handwritten digit recognition datasets, and were sur-
prised that although the task is always the same, al-
most no expertise can be transferred between these
datsets, even though we followed the known prepro-
cessing steps by the letter and also checked format
similarity in other ways.

2 Preprocessing

Here, we describe the full processing of our data: from
the design of the input page over digital scanning, cell
and digit segmentation towards downscaling and blur-
ring.

2.1 Design of input page

Rather than tackling the complex problem of general
segmentation just to extract the sample digits, we
chose an input page layout that makes segmentation



Figure 1: Left: Empty input page, Right: Filled-in
input page after scanning (student data intentionally
made unreadable)

AI Methoden der Datenanalyse VO & LU - Anmeldung & Trainingsdaten 1

Matrikelnummer

Name

EMail

0 1 2 3 4 5 6 7 8 9

Bitte tragen Sie handschriftlich die Ziffern 0-9 in die entsprechenden Spalten ein. Versuchen Sie
nicht, besonders schön zu schreiben, sondern so wie immer. Jede Ziffer sollte ungefähr in der Mitte
des Kästchens sein. Arbeiten Sie zügig und ruhig in Ihrem gewohnten Tempo.
Die Daten werden eingescannt, anonymisiert und digital weiterverarbeitet, und bilden Trainings-
daten für die Laborübung. Sollten Sie aus irgendwelchen Gründen Beispiele Ihrer Handschrift nicht
zur Verfügung stellen wollen, dann tragen Sie bitte keine Ziffern ein.

Ich bin damit einverstanden, daß nach Abschluß der LVA die von mir erstellten Daten:

2 für weitere Forschungsprojekte des Lehrveranstaltungsleiter verwendet werden können, al-
lerdings ohne Weitergabe an dritte Personen (äquivalent einem Non-Disclosure Agreement)

2 der Allgemeinheit zur Verfügung gestellt werden (zB im UCI Data Mining Repository)

Zutreffendes bitte ankreuzen!

relatively easy, see the left side of Figure 1. A table
consists of horizontal and vertical lines, which are rec-
ognizable in the horizontal and vertical histograms as
major peaks, where adjacent peaks have the same dis-
tance – namely the width and height of each cell. See
also Figure 2.

Additionally, each student wrote their student ID
(fully numeric) on the first line of the page, above the
table. As we know each student’s id, this data could in
the future be used to develop and test approaches to
handwritten digit segmentation, but is currently un-
used as the number of samples is too small.

2.2 Scanning

The right side of Figure 1 shows a filled-in input
page after scanning with 600 dpi on a Canon IR 2200
with automatic document feeder. The output was
4950x6996 pixels in size. The Canon generally does
a very good job to map grayscale values to black-and-
white – one student writing with a pencil and another
who wrote with a red pen were both mapped to black-
and-white reasonably well, and the classification accu-
racy does not suffer unduly.

2.3 Cell Segmentation

Although we had full control over the input page, seg-
mentation was still somewhat tricky. Figure 2 shows
the horizontal and vertical histograms extracted from
a sample scanned input page. For preprocessing we
used the open-source ImageMagick C/C++ library
(www.imagemagick.org) plus several hundred lines of
C code.

The horizontal histogram was less problematic to an-
alyze. The top 11 peaks usually corresponded to the

Figure 2: Scanned input page with horizontal and ver-
tical histograms

eleven vertical lines of the table. However, in some
cases one of the top 11 peaks included at least one set
of digits which were exceptionally well aligned along
the vertical axis. Since these were always near a larger
peak, we chose to ignore peaks which were less than
about half the cell size (in pixels) away from a larger
peak. This parameter was called MERGE_INTERVAL

and set to 150, as the cell size of the table is around
300x300 pixels at 600dpi. All parameter values are in
pixels and need to be adjusted for different resolutions
and/or page sizes.

For the vertical histogram, we used the same ap-
proach with the same value of MERGE_INTERVAL. Un-
fortunately there were a lot of high peaks correspond-
ing to the base lines of the machine-printed text on
the top and the bottom of the page, which were
regularily confused with lines from the table. This
should not come as a surprise, since yertical his-
tograms are used to determine the position of lines
of text in OCR, and there are about a dozen lines
of machine-printed text on the page. Therefore, we
had to ignore intervals at the top and bottom of the
page (i.e. 0 to EXCLUDE_VERTICAL_TO (1500), and
EXCLUDE_VERTICAL_FROM (4850) to 6996 pixels).

The initial analysis from the histograms gives us a set
of coordinates that determine the positions and sizes
for each cell. However, as we can see from Figure 3 (left
side) the lines are not perfectly axis-parallel horizontal



or vertical lines as the automatic page feeder does not
align the page perfectly. Additionally, each page was
aligned differently. As we already had a good approx-
imation of line positions, we chose to refine them as
follows.

For each horizontal line in the table (previously es-
timated by the vertical histogram), we searched for
the true line along each point in the middle be-
tween two adjacent crossing vertical lines. The
search was done in the vertical axis-parallel direc-
tion (± SEARCH_ARRAYLINE_INTERVAL (20), i.e. be-
tween 20 pixels below and above the midpoint). A
line was defined as the nearest sequence of more than
IGNORE_SIZE (2) black pixels within the searched in-
terval, and the central pixel was used as the true line
position in that case. This gives at most 10 samples
(x,y) for the true line position. In reality, the num-
ber was smaller as not in all cases the line could be
found2. To exactly define one line in 2D, two sam-
ple points would be sufficent. To get a very robust
approximation of the true line position, we applied
linear regression to all found position samples. The
same approach was used for the vertical lines, i.e. us-
ing the midpoint between two adjacent crossing hor-
izontal lines, and searching in horizontal axis-parallel
direction.

Figure 3 shows the improvement of using just hori-
zontal and vertical histograms versus refinement with
our local search approach and linear regression. The
refinement procedure outlined here captures the exact
table positions almost perfectly for all our scanned in-
put pages. However, in one of our scanned pages a
scanning error in the form of a 1-point thin horizontal
line somewhere within the table region led to a mis-
take in the positioning of a single horizontal line and
five samples in the corresponding columns were made
unusable. Increasing SEARCH_ARRAYLINE_INTERVAL

solves this, but introduces more serious errors. Fur-
ther work is needed to recover from these kinds of er-
rors, which seem to appear in about 2% of all scanned
pages.

2.4 Digit Segmentation

What remains to be done is to extract one sample
digit from each cell that is defined by the vertical and
horizontal lines of the table, which have already been
reconstructed in the last step. We can no longer as-
sume the lines to be perfectly horizontal and vertical.
However, this is desirable for an efficient algorithm,
so as first step we determined the largest axis-parallel
rectangle which fits into the parallelogram given by the

2In that case, it either was connected to a digit or bro-
ken by white speck noise at the midpoint.

four crossing-points of adjacent horizontal and vertical
lines defining each cell.

This rectangle is in an all black area, i.e. almost all
of the pixels along the border of this rectangle should
be black. To get into the inner area of the cell, the
size of the rectangle is reduced pixel by pixel sym-
metrically around its center until less than one fiftieth
(THRESHOLD_PERCENT_INVERSE (50)), i.e. 2%, of its
border pixels are black. This yields the largest rect-
angle within the cell, i.e. on the outer border of the
white area in which we expect the digit to be.

To enclose the digit, the size of the rectangle is re-
duced pixel by pixel, for each side separately. For
each side, the size is reduced until at least one fiftieth
(THRESHOLD_PERCENT_INVERSE_2 (50)), i.e. 2%, of the
border pixels from that side are black for five consec-
utive steps. The size is afterwards increased by the
same amount so that no part of the digit is lost. This
was found to be a very efficient way to handle speck
noise, provided it is not connected with the digit. The
final result is the smallest rectangle that contains the
digit, so segmentation is complete.

Five samples could not be recovered in this segmen-
tation step, as the cells contained parts from several
digits due to overlap between the contents of differ-
ent cells. All in all the segmentation was successful:
99.71% of the contributed digits were successfuly seg-
mented by our algorithm, and half of the unusable
samples came from a single scanning error which could
easily be corrected by rescanning the incorrect page
(see last section), or by further improvements to cell
segmentation.

2.5 Resizing and Blurring

There are two different ways to normalize the size of
a digit: One, we may resize the digit by leaving its
proportions intact. We called this 1:1 scaling. While
this gives a natural-looking digit, a tall digit will have
many white pixels just because of its proportion, and
these do not contribute much to the recognition pro-
cess. Two, we may resize the digit arbitrarily to use
the available space as fully as possible, and have the
learning algorithms cope with the resulting distortions.
We called the latter approach arbitrary scaling.

Downscaling always means a loss of information. If
we were to downscale to a black-and-width bitmap,
the loss of information would be quite huge. There-
fore, downscaling is usually done to a grayscale bitmap
where the gray values still retain some information of
the distribution of black pixels within each downscaled
pixel. We used the Mitchell filter from ImageMagick
for downscaling, which was default for that operation.
It has a parameter to control blurring. A setting of 0.5



Figure 3: Left: Horizontal/vertical lines from histograms, Right: Refined via local search and linear regression.

Figure 4: Left: b=0.5, 1:1 scaling; Right: b=2.5, arbi-
trary scaling

gives natural-looking digits with sharp edges. A set-
ting of 2.5 with arbitrary scaling gives blurred-looking
digits but improves classification performance. Fig-
ure 4 shows the former setting on the left, and the
latter on the right.

All in all, a setting of blur=2.5 for the Mitchell fil-
ter and arbitrary scaling to 16x16 pixels were found
to give the best results with several different classi-
fiers. In fact, for arbitrary scaling to 16x16 pixels,
the test set error as a function of blur was found to

be approximately quadratic with a global minimum at
blur=2.5. We have also prepared the digits in MNIST
and USPS-compatible format for the expertise trans-
ferral experiments.

2.6 MNIST and USPS

The US Postal (USPS) handwritten digit dataset is de-
rived from a project on recognizing handwritten digits
on envelopes [1]. The digits were downscaled to 16x16
pixels and 1:1 scaled. The training set has 7291 sam-
ples, and the test set has 2007 samples. We have out-
put our digits in a similar format by using 1:1 scaling
plus Mitchell filter downsampling with blur=0.5. This
yields the most similar grayscale histogram to USPS.
Figure 5 shows samples from USPS and from our re-
formatted dataset.

The MNIST dataset, one of the most famous in digit
recognition, is derived from the NIST dataset, and has
been created by Yann LeCun [2]. The digits from
NIST were downscaled to 20x20 pixels and centered
in a 28x28 pixel bitmap by putting center-of-gravity
of the black pixels in the center of the bitmap. It



Figure 5: Left: USPS, Right: digits (reformatted)

Figure 6: Left: MNIST, Right: digits (reformatted)

has 60,000 training and 10,000 test samples. We have
output our digits in this format with Mitchell filter
downsampling and again blur=0.5. Center-of-gravity
was computed before downsampling and scaled accord-
ingly. Figure 6 shows samples from MNIST and from
our reformatted dataset. You can see that MNIST
has some segmentation errors (e.g. column 4, row 4 is
a badly segmented four), possibly as much as 1%3 –
for our dataset, we checked each sample manually for
segmentation errors, so there should be none.

In both cases, we normalized the grayscale values to
the training data – from 0 (white) to 255 (black) for
MNIST, and -1 (white) to +1 (black) for USPS. For
USPS, we adapted the blur parameter of the Mitchell
downsampling filter to get the most similar grayscale
histogram. For MNIST, we used the same value.

3 Results

In this section we note some preliminary results on
our digits dataset, MNIST and USPS and discuss
qualitative differences between the datasets. A sup-
port vector machine (SVM) classifier implementation
from WEKA4, SMO [4] was chosen since SVM classi-
fiers usually perform well in pattern recognition tasks
even with simple representations (e.g. each pixel as
a feature as in our case). We found in earlier experi-

3These actually come from the supposedly cleaner part
of the test set by Census employees, SD-3.

4
www.cs.waikato.ac.nz/~ml/weka, [5]

ments that a polynomial kernel with exponent 5 (-E 5),
lambda cost parameter 10 (-C 10) and feature space
normalization (-F) performed well and therefore used
this classifier for all of the following experiments.

3.1 digits

For these experiments, we chose to use all 44 user’s
samples. We randomly divided the users into two dif-
ferent groups of 22 students, and used one of them for
training and the other for testing. Initial experiments
had indicated that arbitrary scaling and a blur setting
of 2.5 for the Mitchell downsampling filter should per-
form well. We chose to downsample to 16x16 pixels.
The settings achieved an error rate of 6.10% on the
test set. Using 1:1 scaling with blur=0.5 (similar to
USPS) gave a much worse error rate of 12.20%. Gaus-
sian blurring with a 5x5 filter improved the latter to
8.05%. We conclude that a higher amount of blur-
ring is beneficial for this dataset, independent of the
specific algorithm used.

3.2 USPS

For the US Postal dataset, we can already assume that
the writers for training and test set are disjunct, so we
ran the given training and test sets as is.

The test set error was 4.29% and thus a bit better than
the digit dataset with similar settings. This may be
explained by the higher amount of training data (7291
vs. 2192 examples). Applying a gaussian 5x5 filter
on training and test data prior to training resulted
in a slightly worse error of 4.63%. We conclude that
a higher amount of blurring is not beneficial for this
dataset.

3.3 MNIST

For the MNIST dataset, we can also assume that the
writers for training and test set are disjunct, so we ran
the given training and test sets as is.

Th test set error was 1.27% and thus much better than
either USPS or digits. Combined with the other re-
sults, this suggests that the SVM classifier performs
better with more training data, so the higher amount
of training data (60,000 vs. 7291 (USPS) and 2192
(digits)) may explain this behaviour. Applying a gaus-
sian 5x5 filter prior to training again yielded a slightly
worse error of 1.28%.

These results are slightly worse than those reported in
[3] for LeNet-4 (1.1%) and LeNet-5 (0.95%), but better
than the previous best result for polynomial SVM also
reported there. This is probably due to a combination
of feature space normalization and pairwise classifica-



tion. Note that based on our estimation of around 1%
segmentation errors, errors below that value may not
be significantly different from zero.

3.4 Transferring expertise over datasets

We were interested in determining if expertise can be
transferred over datasets, i.e. if models trained for
MNIST or USPS were able to classify our full digit
dataset with comparable error rates. For a realistic
digit recognition system, this is an essential feature.
It turned out that is not the case: when training on
MNIST, the test set error is 30.39% when tested on
the full digit dataset; and when training on USPS, the
error is 49.03%. In each case we used the appropriately
reformatted digits dataset. Switching off the SVM in-
put data normalization (-N 2) did not improve on these
results. While the baseline error of 90% was greatly
improved, the performance is still orders of magnitude
worse than could be expected from previous results.
It seems that at least the SVM classifier is suscep-
tible to small differences in preprocessing which are
insufficiently documented for MNIST and USPS, e.g.
the algorithm used for downsampling and its settings.
This weakness may also apply to other classifiers.

3.5 Human error

We chose 100 random samples from the digits dataset
and asked our students to classify them in small groups
of around 2-4 people. The error rate of human classi-
fication according to this experiment is around 0.67%.
As many datasets, among them USPS and MNIST,
use human expertise to determine the true class of a
digit, there is likely to be some class noise in all these
datasets additionally to the segmentation errors which
we already noticed. It should be noted that the digits
were given in the format of digits (i.e. blurred and
arbitrarily scaled, see Figure 4 (right)), and due to the
data collection procedure there was no context around
each digit. Both might have increased the human error
rate.

4 Conclusion

We have created a new handwritten digit recognition
dataset from scratch, with the help of students for the
AI Methods of Data Analysis class of 2005. While
the collected dataset is still small, we have noted some
surprising results concerning the generality of hand-
written digit recognizers.

One general observation is that the error rate for SVMs
sinks with higher amounts of training data, usually
drastically. From our digits dataset over USPS and
finally MNIST, this is indeed the case. In the same

direction, the influence of blurring on the performance
is reduced: Blurring helps on our small digit dataset,
but has little effect on USPS or MNIST. We think that
with more data, SVMs create more robust models and
are therefore less influenced by blurring.

However, the inability to transfer expertise over to
other similar datasets is worrying and indicates that
a general purpose handwritten digit recognizer is still
some way in the future.

The most obvious lesson from this is that for a state-of-
the-art recognizer, it is best to train it on self-collected
data. Using publicly available datasets for this pur-
pose seems to work very badly, and it is unlikely that
the published error rates can be reproduced on one’s
own data – as we found out. However, significant
amounts of training data seem to be needed for state-
of-the-art performance. Pooling datasets from multi-
ple sources may be an option, as would be to compare
with datasets where preprocessing is more comprehen-
sively documented. We intend to address these ques-
tions in future work.

5 Acknowledgements

The Austrian Research Institute for Artificial Intelli-
gence is supported by the Austrian Federal Ministry of
Education, Science and Culture and by the Austrian
Federal Ministry for Transport, Innovation and Tech-
nology. We gratefully acknowledge the support of the
students of AI Methods of Data Analysis, class 2005.

References

[1] Hastie, T., Tibshirani, R., Friedman, J.H. The Ele-
ments of Statistical Learning. July 2003, Springer,
Berlin/Heidelberg. ISBN 0387952845.

[2] Y. LeCun, L. Bottou, Y. Bengio, and P.
Haffner. ”Gradient-based learning applied to doc-
ument recognition.” Proceedings of the IEEE,
86(11):2278-2324, November 1998.

[3] Liu, L., Nakashima, K., Sako, H., Fujisawa, H.
Handwritten digit recognition: benchmarking of
state-of-the-art techniques. In Pattern Recogni-
tion, 36 (2003), pp. 2271–2285.

[4] Platt, J. Fast Training of Support Vector Machines
using Sequential Minimal Optimization. Advances
in Kernel Methods - Support Vector Learning, B.
Schölkopf, C. Burges, and A. Smola, eds., MIT
Press, 1998.

[5] Ian H. Witten and Eibe Frank (2005) ”Data Min-
ing: Practical machine learning tools and tech-
niques”, 2nd Edition, Morgan Kaufmann, San
Francisco, 2005.


