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SVM using either kernel.
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1 Introduction

Historically, the perceptron classifier was one of the first linear learning ma-
chines, and although the famous paper Minsky & Papert (1969), which showed
that it cannot learn non-linear discriminant models (such as the XOR prob-
lem), had an adverse effect on its development, the perceptron classifier can
be seen as ancestor of both Neural networks and Support Vector machines.

In both cases, a solution to solve non-linear problems was introduced: for
Neural networks, by combining layers of perceptrons with the back-propagation
learning rule; for SVMs, by regularizing the linear problem so that it has a
unique solution (i.e. the maximum margin hyperplane) and by blowing up the
dimensionality of the original space to improve linear separability, plus us-
ing slack variables to find a unique solution even when the data is not linear
separable.

Given a linear separable dataset, there will normally be infinitely many
hyperplanes that separate the two classes. The perceptron classifier will ran-
domly choose one of them. SVM instead finds the maximum margin hyper-
plane, which is defined as the separating hyperplane with the maximum dis-
tance (margin) from the convex hull of both classes. This is uniquely defined
for each linear separable dataset, and thus guarantees an unique solution. If
the classes are not linear separable, SVM allows some examples on the wrong
side of the hyperplane (determined by complexity parameter C), which again
guarantees an unique solution.

Support Vector machines improve upon the perceptron by not only having
one well-defined global optimum in concept space, but also proven convergence
towards this optimum. Neural networks have many local optima, and as for
the perceptron convergence is not assured.

Usually, drastically increasing input dimensionality also makes a learn-
ing algorithm much slower. However, the algorithms for solving the SVM
can be reformulated to use not the high-dimensional transformed data sam-
ples themselves, but just the dot-product of two high-dimensional data sam-
ples. The high-dimensional samples themselves are then never needed di-
rectly. This is where the kernel function comes into play. A kernel func-
tion is a computational short-cut to efficiently compute this necessary dot-
product without needing to expand the data samples first. Thus, for exam-
ple, a SVM which has as input all possible products of nine numeric input
variables (i.e. a 9-degree polynomial kernel) can compute the dot-product as

K(x1, x2) = 〈x1, x2〉
9

(i.e. the dot-product of two samples to the ninth power)
instead of as K(x1, x2) = 〈φ(x1), φ(x2)〉 with

φ(x) =





∏

i,j,k,l,m,n,o,p,q

x[i] ∗ x[j] ∗ x[k] ∗ x[l] ∗ x[m] ∗ x[n] ∗ x[o] ∗ x[p] ∗ x[q]





(i.e. the dot-product of two samples in the high-dimensional space). Both ways
to compute the dot-product are equivalent, but it is instantly obvious that the
first formulation can be computed much faster.
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This kernel trick, as it is also called, allows to uncouple the training method
from the data – since only dot-products are needed by the SVM algorithm –
and thus allows the SVM to process not only numeric data, or data which
has been appropriately transformed into numeric format, but also character
sequences, trees, lists, graphs and other complex data structures directly (see
Haussler (1999) and Cortes et al. (2004) for two general approaches to build
such kernels). In each case, we only need to define a valid kernel, i.e. a compu-
tational shortcut to efficiently compute a dot-product of any two samples. This
is a unique capability which few other classifiers share.1 However, efficiency
is an issue with some non-standard kernels and experiments can take a long
time and much memory.

We tackled these issues from two directions, beginning with one well-
developed kernel, the Subsequence String Kernel (SSK, Lodhi et al. (2002)).

– By introducing an approximation to the SSK, SSK-LP, which takes far less
memory than SSK and is usually several orders of magnitude faster.

– By creating average runtime and maximum memory consumption models
for both variants. These models can be applied prior to experimentation,
and compute expected runtime and memory consumption for a single kernel
evaluation. As kernel evaluation runtime is one major determinant of total
runtime of the SVM, especially for complex kernels, this gives a rough
estimate of total runtime and the minimum amount of memory needed to
successfully run the kernel on a given dataset.

It is our hope that both approaches will prove sufficient to apply these SSK
variants more widely, and that the underlying approach will inspire others as
well.

2 Related work

Leslie et al. (2002) propose a different kind of string kernel, the so-called spec-
trum or mismatch kernel. The restriction to n-grams (i.e., contiguous subse-
quences) as features allows a more efficient implementation. They do not show
that their kernel satisfies Mercer’s theorem, but Cortes et al. (2004) demon-
strate this. As SSK-LP with θ = 2 ∗ n is equivalent to using n-gram features,
this specific variant must therefore satisfy Mercer’s theorem as well.

Collins & Duffy (2002) introduce convolution kernels for natural language
processing, i.e. a tree kernel based on the ideas of Haussler (1999). They quote
(unproven) an average runtime that is linear in the tree size, but worst case
performance is on the order of square of tree size – similar to our approach. This
kernel is shown to satisfy Mercer’s theorem. Features are common subtrees, so
again no gaps are considered.

1 E.g. Instance-based learning algorithms. Even in that case an appropriate distance mea-
sure needs to be defined, and kernels can be viewed as distance measures – see for example
Section 5.3.
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Lodhi et al. (2002) is another work that can be viewed as based on Haussler
(1999), and gives the original implementation of SSK as well as some experi-
mental results. This work will be amply discussed throughout this paper where
appropriate.

A recent work is Cortes et al. (2004) on Rational Kernels, which unifies
several approaches to build kernels on complex data structures, and also shows
that edit distance with a alphabet of size greater than 1 does not satisfy
Mercer’s theorem. They show that a single algorithm is sufficient to implement
all rational kernels, albeit via a finite automaton approach – a programming
language by any other name – and thus cannot claim to significantly simplify
the implementation of new kernels.

Rousu & Shawe-Taylor (2005) offer a comprehensive evaluation of several
approaches to compute string kernels, namely trie-based and full dynamic
programming (similar to SSK), and propose a sparse dynamic programming
approach. While runtime results are given, no analytical model is obtained.
Additionally, their proposed new method depends on alphabet size and the
number of gaps that are permitted as well as string length, so the results are not
directly comparable to our work. Their runtime complexity is O(n|M |log|s|),
where |M | is the size of the alphabet. Worst-case memory consumption is
not given. They have focussed only on single kernel evaluations rather than
running a SVM based on their proposed kernel.

3 Background

This section aims to introduce the reader to the general concept of Support
Vector Machines, the kernel trick and more specifically to the String Sub-
sequence Kernel (SSK). After this, we explain our approximation method,
Lambda Pruning (SSK-LP), in detail.

3.1 Kernels and support vector machines

A Support Vector Machine (SVM) is a classification algorithm which learns a
hyperplane that separates two sets of points that belong to different classes.
The algorithm is based on viewing the linear separation of these sets as an
optimization problem, the goal of which is to maximize the margin of the
hyperplane, i.e. the distance from the hyperplane to the nearest point of each
class, which is a measure of the robustness of the separation. In case of non-
separability, the sum of the distances of all points which are on the wrong side
of the hyperplane is bounded by a complexity parameter, usually called C.2

Several methods exist that solve this problem efficiently, for instance Se-
quential Minimal Optimization (SMO, Platt (1998)) or SVM-light (Joachims
(2002)). A nonlinear mapping from the attribute space to a higher-dimensional

2 The original formulation of SVMs calls this complexity parameter λ. Here, λ is a decay
factor that penalizes non-continguous subsequence matches.
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feature space is usually applied prior to training, since a higher number of
dimensions increases the probability that the data becomes linear separa-
ble within the high-dimensional feature space. This space may be very high-
dimensional, which would normally incur massive computational issues, as
runtime and memory consumption would have to increase at least linear with
the number of dimensions used.

This is the point where one central idea of SVMs comes into play, the so-
called kernel trick : A closer look into the mathematical formulation of SVMs
shows that the data points (vectors) are never used directly, they are only
introduced into the calculations via the dot-product between two such points
(see e.g. Cristianini & Taylor (2000)). This fact gives rise to the idea of a func-
tion combining the mapping and the dot product, so that it is not necessary
to compute the high-dimensional vectors explicitly. This kind of function is
called a kernel function, or short kernel.

More formally, for any mapping φ : D → F the function K : K(x1, x2) =
〈φ(x1), φ(x2)〉 is a kernel function. (〈., .〉 denotes the dot product). An interest-
ing consequence is that the attribute space D from which the kernel projects
data into F need not necessarily be an Euclidean space, but may have any
form and dimension, even infinite dimensionality.

3.2 String subsequence kernel (SSK)

The basic idea behind this type of kernel is to define the dot product of two
sequences by means of the subsequences they contain. The high-dimensional
feature space implied by this kernel contains all possible subsequences as fea-
tures. In order to understand the subsequent discussion better, we will now cite
the corresponding part (Def. 1 ff.) from Lodhi et al. (2002) in an abbreviated
form here. Please note that our numbering scheme is slightly different.

Definitions Let Σ be a finite alphabet. A string is a finite sequence
of characters from Σ, including the empty sequence. For strings s,t, we
denote by |s| the length of the string s = s1 . . . s|s|, and by st the string
obtained by concatenating the strings s and t. The string s[i : j] is the
substring si . . . sj of s. We say that u is a subsequence of s, if there
exist indices i = (i1, . . . , i|u|) with 1 ≤ i1 ≤ i2 ≤ i|u| ≤ |s|, such that
uj = sij

, for j = 1, . . . , |u|, or u = s[i] for short. The length l(i) of the
subsequence in s is i|u| − i1 + 1. We denote by Σn the set of all finite
strings of length n, and by Σ∗ the set of all strings

Σ∗ =

∞
⋃

n=0

Σn

We now define feature spaces Fn = RΣn

. The feature mapping φ for a
string s is given by defining the u coordinate φu(s) for each u ∈ Σn.
We define

φu(s) =
∑

i:u=s[i]

λl(i)
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for some λ ∈ (0, 1). These features measure the number of occurrences of
subsequences in the string s weighting them according to their lengths.
Hence, the inner product of the feature vectors for two strings s and t

give a sum over all common subsequences weighted according to their
frequency of occurrence and lengths.

As can be seen by above definition, the method proposed in Lodhi et al. (2002)
considers contiguous as well as non-contiguous subsequences; the degree of
contiguity determines the weight of the subsequence match in the compari-
son. SSK is parametrized by two values, n and λ. The length of the common
subsequences to look for is n. λ is a real value ∈ (0, 1), which is used as a
decay factor to penalize non-contiguous substring matches3. The kernel im-
plicitly maps the input strings to a feature space F that has one dimension for
each possible combination u of n characters. The u-coordinate φu(s) of a given
string s is calculated by summing over all occurrences of u in s. Each occur-
rence of u yields a value of λl, where l denotes the length of that occurrence
of u in s, that is, the length of u plus all the interior gaps of the occurrence.
The result of the kernel function for two input strings s,t is the dot product
of their feature mappings. More formally:

Kn(s, t) =
∑

u∈Σn

〈φu(s) · φu(t)〉 =
∑

u∈Σn

∑

i:u=s[i]

λl(i)
∑

j:u=t[j]

λl(j)

=
∑

u∈Σn

∑

i:u=s[i]

∑

j:u=t[j]

λl(i)+l(j) (1)

At first glance this may seem like an exponential algorithm, but Lodhi et al.
(2002) also propose an efficient recursive formulation with dynamic program-
ming that uses only O(n|s||t|) time. However, an essential feature to obtain
the reported runtime performance is using a cache for all intermediate results,
which uses O(n|s||t|) space as well.4

3.3 Lambda pruning

Equation 1 shows that the result of the kernel evaluation is a sum over dif-
ferent powers of λ. It is obvious that the contribution of subsequences u to
the overall result is the smaller the more the subsequence match is stretched
in both strings. When analyzing the recursion tree that is processed for each
kernel evaluation, it becomes clear, on the other hand, that these stretched
matches neccessitate a vast amount of computational effort. These observa-
tions together motivate a change to the algorithm in a way that the recursion
is stopped as soon as it is certain that the result of the current branch is very

3 Note that all contiguous substring matches have the same value of λ|u|.
4 Initially, we implemented SSK without such a cache and it distinctly showed exponential

runtime behaviour.
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small. This is a trade-off between result accuracy and consumed computation
time.

This behaviour can be achieved by introducing a bound to the parameters
in the formula that account for the addends in the kernel computation λl(i)+l(j).
By bounding the sum of l(i)+l(j), we can stop the computation once it reaches
the bound, which we have called Maximum Lambda Exponent, or θ.

The new kernel parameter θ is used as the upper bound for exponents of
λ that may occur in the computation. This means that a subsequence match
for a string u is only counted in the final result if the sum of the length of u in
s and the length of u in t (both lengths including the gaps) is smaller than θ.
The definition of our kernel for Lambda Pruning is:

Kn,θ(s, t) =
∑

u∈Σn

∑

i:u=s[i]

∑

j:u=t[j]

f(l(i), l(j)) (2)

f(x, y) =

{

0 if x + y > θ

λx+y otherwise

The influence that θ has on the result is, qualitatively speaking, control of
subsequence match relaxation. The definition set of θ is x ∈ N, 2n ≤ x < ∞.
θ = θ − 2n specifies a slack value for match relaxation defining how many
interior gaps each subsequence match may have in s and t together.

Using θ = 2n (θ = 0) makes SSK-LP identical to an n-grams kernel,
as only contiguous substring matches are allowed. Values slightly above 2n

(θ > 0) create a ’fuzzy’ n-grams kernel, while using θ ∈ [4n, 8n] (θ ∈ [2n, 6n])
usually gives quite a good approximation of SSK, depending on the type of
data used. We have chosen to set a default value of θ = 3n (θ = n), which
seems a good compromise for a variety of learning tasks.

We should point out that the Gram matrix approximation proposed in
(Lodhi et al., 2002), section 5, is concerned with reducing the number of kernel
evaluations for a given learning task by decomposing each kernel evaluation
into a product of two kernel evaluations on a smaller input set, and does not
speed up the kernel evaluations themselves. As such, it is a different kind of
approximation than SSK-LP and cannot be directly compared.

First, it is necessary to reformulate the original exponential time compu-
tation formula for Kn,θ into a recursive computation with time complexity
O(n|s||t|) using the helper functions K ′ and K ′′. K ′ counts the length from
the beginning of the particular sequence through to the end of strings s and t

instead of just l(i) and l(j). An efficient recursive definition of K ′ reduces the
complexity to O(n|s||t|2). The second helper function K ′′ efficiently computes
K ′ by reusing the results of K ′ for shorter s and t strings in the computation
of longer strings.

This recursive computation of SSK has to be adapted in order to conform
to this definition of lambda pruning. An additional parameter m is added to
the kernel function. Each time a value of λ|u| is multiplied with the recursion
result m is decremented by |u| and passed to the next recursion level; if the
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condition m < 2i is true, the recursion ends prematurely as this means that
i characters would need to be matched in each of string s and t, incurring a
total weight of λ2i. Thus the recursion depth is limited by m.

Definition 1 Recursive computation of SSK with Lambda Pruning (SSK-LP)

K ′
0,m(s, t) = 1, for all s, t

K ′
i,m(s, t) = 0, if min (|s|, |t|) < i

Ki,m(s, t) = 0, if min (|s|, |t|) < i

K ′
i,m(s, t) = 0, if m < 2i

K ′
i,m(sx, t) = λK ′

i,m−1(s, t) + K ′′
i,m(sx, t), i = 1, . . . , n − 1

K ′′
i,m(sx, tu) = λ|u|K ′′

i,m−|u|(sx, t), @k : uk = x

K ′′
i,m(sx, tx) = λ(K ′′

i,m−1(sx, t) + λK ′
i−1,m−2(s, t))

Kn,m(sx, t) = Kn,m(s, t) +
∑

j:tj=x

K ′
n−1,m−2(s, t[1 : j − 1])λ2

Contrary to the standard SSK implementation, where all return values of K ′

and K ′′ were cached, in the case of Lambda pruning we did not use a cache
of intermediate results. Although this would have improved runtime slightly,
it would also have drastically increased memory consumption beyond that
needed for the original SSK.

This is because there are usually several ways to enter the same recursion
tree, but at different entry points. While in the non-depth-limited case (for
SSK) caching is simple since all these entry points can use the same value for
that subtree, in the depth-limited case (SSK-LP) we would need more than
one cached value per subtree. This is because, depending on how deep the
entry point is, the subtree must be followed for a variable depth so that the
total depth does not exceed the depth-limit. One reasonable way to solve this
would be to add the current depth to the cache index. This however would
increase memory consumption for the full cache by a factor of n + 1 over
SSK, which would have exceeded the available memory on our machine for
the largest datasets.

For the Support Vector Machine algorithm to work provably it is sufficient
to show that the kernel function satisfies Mercer’s Theorem, although simpler
definitions exist for the finite-dimensional case. It is also sufficient to show that
a function φ exists such that K can be written as a dot product of φ(x1) and
φ(x2), or that the kernel matrix is always positive semi-definite. Some kernels
have been introduced that are not known to satisfy Mercer’s theorem – which
means that they either do not satisfy the theorem, or that they do but no
proof has yet been found – but which still work well in practice. SSK-LP falls
into this category, as do some of the kernels used within BioInformatics, and
kernels based on edit distance, see Cortes et al. (2004). Theoretically, using a
non-valid kernel can lead to non-convergence of the SVM algorithm. However,
both SSK and SSK-LP (with SSK-LP being the default setting) have been
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available within WEKA since August 2005, and up to date we have not heard
of a single case where SSK-LP did not converge, which may indicate that
SSK-LP is either a avalid kernel or that non-convergence is not of practical
relevance. Note also that SSK-LP with θ = 2 ∗ n clearly satisfies Mercer’s
theorem, as it is equivalent to the kernel from Leslie et al. (2002) which is
know to satisfy Mercer’s theorem.

Remark 1 An alternative would be to threshold both x and y with the same
value θ, rather than the sum. This has the advantage of guaranteeing a valid
kernel, since we are mapping each sequence to a feature vector only depending
on λ and θ. The same argument does not hold for SSK-LP, as there the feature
vectors of x and y depend on each other. We ran similar extensive experiments
and found that this variant runs 1.57 ± 0.57 times slower than SSK-LP. As
we search deeper, this is to be expected. Memory consumption is unchanged.
What really surprised us is that the approximation accuracy is so much worse5

– the values are on average 3.50 ± 3.48 times too high, while SSK-LP has a
much better factor of 0.80 ± 0.33. While both converge towards the true
value of the original SSK, this variant converges much slower than SSK-LP.
We speculate that the combined threshold for x and y yields some nontrivial
advantage which we are unable to explain theoretically. In any case, the faster
convergence of SSK-LP makes it far more suited for practical applications, so
we focussed our investigation on SSK-LP.

4 Modeling time, space and error

This section describes the average case runtime model, the worst case memory
consumption model and an investigation into SSK-LP approximation error.

As we shall see later, these very accurate models give useful estimates on
the runtime of large learning tasks, enabling an intelligent choice of parameter
settings and subsampling sizes for a given runtime and memory budget, both
for SSK and SSK-LP.

When CPU time must be measured in months and years and memory
consumption in gigabytes, as for SSK, it is of utmost importance to know in
advance how much memory will be needed and how long we must wait for a re-
sult. If such models become more widespread, these questions can be answered
a priori from statistical measurements of datasets, which would constitute a
big step forward in practical application of complex machine learning systems.

4.1 Experimental setup

There are several parameters of the SSK which directly influence runtime
and memory consumption. Most prominent among these is the string length

5 This was also what we found in less systematic initial experiments and what prompted
us to develop SSK-LP.
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Fig. 1 Runtime for SSK, averaged over λ.

strLen of the input strings (assuming strLen ≈ |s| ≈ |t|) and the common
subsequence length n. λ has no effect on runtime and memory consumption,
but features prominently in the approximation error versus SSK-LP and was
therefore also included. For SSK-LP, we also have θ as an essential parameter
for the trade-off between runtime and approximation accuracy.

Five values for n were considered (1,2,3,4,5), as well as for λ (0.1, 0.25,
0.5, 0.75, 0.9). θ defaults to 3 ∗ n which yields a good trade-off between speed
and accuracy, but we used 6 ∗ n, 9 ∗ n and 12 ∗ n as well. As n influences the
runtime quite drastically, the maximum value of n was chosen so as to keep
the runtime for the whole experiment on the order of several CPU-months.

Rather than doing a theoretical worst-case analysis on runtime, we opted
for a systematic experiment with real-life input data in an average-case runtime
analysis. Random strings are somewhat of a best case for SSK, while the worst
case would be when both strings consist only of the same character, and both
are unlikely to appear in practice.

As real-life corpus, we used an earlier text-mining dataset from Seewald
(2003), consisting of several tens of thousand samples of MEDLINE abstracts,
as string corpus. Each MEDLINE entry corresponds to a single string in this
corpus. From this corpus, we sampled about one hundred strings of specified
lengths, namely strLen = 1500, 750, 375, and 188. We first sampled strings
with exactly the desired length, then those one character longer than the
desired length, then those one character shorter than the desired length and
so on until enough samples were collected, so the lengths of the collected strings
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Fig. 2 Runtime for SSK-LP, averaged over λ. Top left θ = 3∗n, Top right θ = 6∗n. Bottom
left: θ = 9 ∗ n, Bottom right: θ = 12 ∗ n.

are as close to the target as possible. Each set of string samples was then paired
with a randomly shuffled version of the same set. Thus we obtained pairs of
strings with approximately the desired length.6

We tested all combinations of these parameter values in extensive experi-
ments on a single machine7, and measured time in two different ways to make
sure that the overall CPU load was accounted for, as the experiment did not
use a dedicated machine. The reported execution times are relative to this
platform, and therefore will need to be calibrated for other platforms, but
should give a rough overview of the speed of string kernel evaluation.

4.2 Average case runtime

Figure 1 shows the runtime for SSK, while Figure 2 shows the runtime for SSK-
LP and the four different values for θ. All runtimes are averaged over different

6 The actual string lengths were 1499.60±0.49, 749.18±3.13, 373.91±7.34, and
187.58±3.09, respectively.

7 Athlon64 4000+ with 4GB of main memory, which was sufficient to keep even the largest
working set in memory, running the pure64 version of Debian, kernel 2.6.11., with Sun Java
1.5. (64bit version) and a CVS version of WEKA from May 2005 with SMO.java V1.12.
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Fig. 3 Memory consumption for SSK, averaged over λ.

values of λ to reduce variance.8 In each case we fitted double logarithmic
ridge-regression models which are shown below, and as lines in each graph.

The coefficient of a parameter in the double log linear model can be inter-
preted as exponent to this parameter, while the whole model is the product of
all parameters with their respective exponents. We have chosen to rearrange
the obtained model in the interests of comprehensibility, and also aimed for
simplicity.

Each symbol in the graph corresponds to a specific average runtime mea-
surement, averaged both over the approximately 100 string sample pairs as
well as over all different values of λ.

For SSK, we obtained

runTime SSK = strLen1.456 ∗ e−5.3165

(for n = 1) and

runTime SSK = (strLen2 ∗ n)1.0402 ∗ e−8.897

(for n > 1).9 The output is the estimated time in milliseconds per kernel
evaluation. Some small optimizations of the first inner loop are responsible

8 Average relative standard deviation is 0.44% for SSK and 1.03% for SSK-LP, the latter
for execution times of more than 100ms. Values below this had high variance as we approach
the accuracy limits of runtime measurement (1ms per sample).

9 We used strLen2 ∗ n as one of the input features because of theoretical considerations
concerning worst-case runtime. Similar but not identical results were obtained when using
strLen and n as separate features.
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Fig. 4 Ratio of SSK-LP values to SSK values (1.0 = perfect agreement).

for the better runtime of n = 1, and for n > 1 we see that the average case
runtime is very close to the worst case runtime of O(strLen2 ∗ n) which was
given in Lodhi et al. (2002).

For SSK-LP, we similarily obtained

runTime SSK-LP = strLen1.425 ∗ e−8.1063

(for n = 1) and

runTime SSK-LP =
θ!1.0549

n!1.8839 ∗ (θ − n)!1.039 ∗ θ1.3331
∗ strLen1.9978 ∗ e−10.4875

(for n > 1). The left part is similar to a binominal coefficent of θ and n (except
for the additional factors of 1

n!0.8839 and 1
θ1.3331 ), which we have reason to believe

to feature prominently in the runtime of SSK-LP due to an earlier analysis.
The correlation coefficient of this model is 0.9986, relative mean squared error
is 0.1662 (5.2037%), which reinforces our belief that this model, albeit being
rather more complex than the one for SSK, is valid. Also, Figure 2 shows
graphically that this function fits the observations very well.
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Fig. 5 Runtime of SSK-LP and SSK (in milliseconds) according to the runtime models,
also showing real runtime as + and ×.

4.3 Worst case memory consumption

Figure 3 shows the memory consumption for SSK. Memory consumption was
averaged over all values of λ, which reduces variance.10 For each set of string
pair samples, only the highest measured memory consumption was used. A re-
gression model has been fitted to the data. Memory consumption is dominated
by the cache for intermediate results, and can be computed as Mem SSK =
38.5888 ∗ (strLen + 1)2 ∗ (n + 1) + 1, 655, 638.1147 (in bytes, round up final
result).

The worst case memory consumption of SSK-LP, Mem SSK-LP, is 4,259,840
bytes. The same value was consistently measured in all experimental runs.

10 As expected, values were practically identical for all five different λ values, given any
set of other parameter values.
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Table 1 This table shows all real-life performance results w.r.t. estimated and real runtime
(RT) at one glance. RT/ev is the average runtime for one kernel evaluation in milliseconds.
All variants were run with default settings n = 3, λ = 0.5, and θ = 3 ∗ n = 9. Additionally,
5.2. used feature space normalization.

Sec. SSK SSK-LP
Estimated Real Estimated Real

RT/ev RT RT res. RT/ev RT RT res.
5.1 1731 399.5d n/a n/a 89 20.5d 21.6d 97.5%
5.2 0.36 2h 17m 16h 50m 84.32% 0.03 11.4m 3h 19m 83.98%
5.3 17.76 17.7m 13.95m see text 1.09 1.09m 1.03m see text

4.4 Approximation error of SSK-LP vs. SSK

Figure 4 shows the approximation error of SSK-LP vs. SSK in dependence on
θ (X axis), n (Y axis) and λ (lines within each subgraph).11 As can be seen,
for λ of 0.1 and 0.25, agreement is very good over all parameter settings. In
some cases agreement is also good for λ = 0.5. For λ of 0.75 and 0.9, the
approximation is much worse, since in this case non-contiguous subsequence
matches have a much higher effect on the final value. Figure 5 shows the
runtime of SSK vs. SSK-LP in the same layout as Figure 4. It shows that SSK-
LP is faster in the lower triangle (for slightly less than half of all parameter
settings tested). A more precise estimate of the applicability of SSK-LP to a
given problem can always be computed directly, via the models of memory
consumption and runtime we presented earlier. The observed constantly small
memory footprint of SSK-LP enables its application within embedded systems,
which would not be feasible for SSK.

5 Real-life performance

In this section we report on experiments with real-life data. We have focussed
on three different problems: domain recognition from biological research pa-
pers, email spam recognition from sender email address, and the use of SSK
as a similarity measure for redundancy clustering – a linguistic task related to
sentence entailment.

We used the default settings of n = 3 and λ = 0.5 for SSK, and θ = 9 for
SSK-LP, unless otherwise noted. The SVM cost parameter was set to C = 1.
Table 1 gives a short overview of all results.

5.1 Text mining

For this experiment, we wanted to check the suitability of SSK for standard
text mining. We chose the domain dataset from Seewald (2003).12 The learn-

11 Because of space restrictions, only n = 1, 3, 5 and θ = 3 ∗ n, 6 ∗ n, 9 ∗ n are shown.
12 Dataset available at http://alex.seewald.at/projects.html#biomint
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ing task was text classification, i.e. classifying bibliographic entries from MED-
LINE as belonging to one of four biological domains: Archaea, Bacteria, Eu-
karyota or Virus. We used the 5% sample and a two-fold CV for accuracy esti-
mation. The results are thus comparable to those reported in Seewald (2003),
Table 1, Acc.CV. The dataset contains 5156 examples. Average length of the
input strings is 1497.21±486.26.

According to our runtime model, SSK is expected to take around 1731ms
for one kernel evaluation. To generate the full kernel matrix for a dataset with

n examples, n(n−1)
2 ≈ n2

2 kernel evaluations are needed.13 Additionally, a two-
fold CV must compute a half-sized kernel matrix twice, so the total number

of kernel evaluations is about 3n2

4 . Running SSK on this dataset would have
taken more than a year, and was therefore not considered.

SSK-LP, on the other hand, should take around 89ms for one kernel eval-
uation, which reduces the expected runtime to 20.5 days. We ran SSK-LP on
this data, and the actual runtime was 518h (21.6d), which agrees well with
our estimate.

The performance of SSK-LP at 97.5% accuracy is competitive to a linear
SVM with the word vector as input (i.e. one attribute for each word that
appears in training data) at 97.7%. Concerning runtime, it is not competitive:
the linear SVM takes around two minutes for the same task. This agrees well
with Joachims (2002), who argued that for most text classification tasks the
relatively simple word vector representation combined with a linear kernel is
already sufficient.

5.2 Spam filtering

For the second task, we chose a string classification task. Rather than a clas-
sic text mining task, where it is feasible to segment the string into smaller
constituents by tokenization, this is no longer easily possible for string clas-
sification. Seewald (2007) describes extensive experiments on a large corpus
consisting of about 90,000 ham and spam mails. Based on the anecdotal ob-
servation that it is often possible to recognize spam mails via a small number
of string features (namely, sender address, sender name and the subject), we
were interested to find out whether SSK could learn to do the same.

We randomly chose a small number of 3,902 samples of sender email ad-
dresses from this corpus (roughly half from spam and half from ham mails).14

Sender email addresses were chosen since these are the hardest to tokenize;
sender name and subject would have been amenable to a simple tokenization
approach and were thus considered unsuitable. The string length in this case
is only 25.56±11.08, so both SSK and SSK-LP can be run on this data. Our
runtime models give 0.36ms for SSK, and 0.03ms for SSK-LP, which both are
below the applicability of the runtime model – the shortest runtime that could

13 This is always incurred, as WEKA needs to compute training set accuracy as well.
14 Corpus available at http://alex.seewald.at/spam/index.html#datasets
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be measured was 1ms. This explains why the agreement in that case is quite
bad. SSK took 16h 50min to run (est. 2h 17m), while SSK-LP took 3h 19min
(est. 11.4m). The speedup factor of about an order of magnitude for SSK-LP
over SSK can still be approximately deduced from the differences in estimated
runtimes. We used feature space normalization15 here, which approximately
doubles runtime for kernel evaluation in the given implementation.16

The accuracy was again estimated via two-fold cross-validation. The accu-
racies of SSK at 84.32% and SSK-LP at 83.98% were very similar. Systematic
parameter optimization of c, n and λ for SSK, including switching off feature
space normalization, had only negligible influence on the result. The default
parameter settings already gave the second highest accuracy of 83.39%. SSK-
LP with θ = 2∗n = 6 (equivalent to 3-grams) using feature space normalization
offers an accuracy of 82.4% and took 57min to run.

5.3 Redundancy clustering

Here, we describe previously unpublished work on redundancy clustering within
the BioMinT project (for context see Pillet et al. (2005), Seewald (2003), See-
wald (2004)). The main focus of BioMinT was the extraction of new knowl-
edge from biological research papers via innovative text mining approaches.
One subtask was to automatically determine and remove redundant sentences
from a result set to give a succint presentation of the found results to the user.
On the one hand, this is somewhat related to summarization approaches; on
the other hand, to the known linguistic concept of sentence entailment. En-
tailment is considered a very hard task, and there are few approaches which
perform better than a simple baseline approach.

Within BioMinT, a corpus of redundant sentences was provided by one
of our partners.17 We received this information as a set of sentence groups.
Within each sentence group there was a primary sentence that provided all
of the information, associated with a set of secondary sentences that provided
only information that was already present in the primary sentence. All sec-
ondary sentences were considered redundant. To make the task more feasible,
we mapped this dataset to pairwise similarity, without distinguishing between
primary sentence and secondary sentences. The similarity between two sen-
tences was determined via several methods, and all pairs of sentences with
similarity values above a certain threshold were considered redundant while
all other pairs were considered to be not redundant. Thus we obtained 59,810
sentence pairs, of which 2,500 were marked as redundant. Instead of fixing the
threshold arbitrarily and reporting a single result, we have chosen to visual-
ize the results as a ROC curve, where the performance at arbitrary thresh-
olds is observable at one glance. The string length for this learning task was

15 Using kernel K′(x, y) = K(x,y)
K(x,x)K(y,y)

, which ensures K ′(x, x) is equal to 1.
16 It would have been possible to implement this in a way as to incur additional cost linear

to the training set size by precomputing all K(x, x) values.
17 Dataset available at http://alex.seewald.at/projects.html#biomint
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165.68±61.27, giving single evaluation times of 17.76ms for SSK and 1.09ms
for SSK-LP.

We have selected five ways to determine similarity between arbitrary sen-
tences (S1,S2):

– Simple, the number of common words between S1 and S2, divided by the
length (in words) of the shorter sentence. This is a simple baseline ap-
proach.

– SSK-def, which determines the similarity between S1 and S2 by computing
an evaluation of the unnormalized string kernel (i.e. SSK), which is nor-
mally used as a kernel for the learning algorithm family of Support Vector
Machines. We chose the default settings of λ = 0.5 and n = 3 here.

– SSK-opt is the same as SSK-def but with n = 6 which was found to be
the optimal setting for n here.

– SSK-LP, which determines the similarity between S1 and S2 via SSK-LP.
In this case, we used λ = 0.5, n = 6 and θ = 20.

– 6-grams, which determines the similarity between S1 and S2 via SSK-LP.
In this case, we used n = 6 and θ = 2 ∗ n = 12, so this is equivalent to a
simpler 6-grams approach.
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Figure 6 shows the results. The unbroken line visualizes the average perfor-
mance of a random similarity measure (i.e. where the values of sim(S1,S2) are
chosen randomly). The higher above this line a measure is, the better it per-
forms. As can be seen, SSK-def already performs much better than the simpler
baseline approach. Parameter optimization for n improves on this result, but
SSK-opt, SSK-LP and 6-grams are very similar. The equivalent 6-grams ap-
proach, which is simpler and could be implemented more efficiently, performs
competitively. Optimizing λ does not improve performance for SSK beyond
SSK-opt. λ has of course no effect on 6-grams.

6 Conclusion

The work at hand presents Lambda Pruning, a novel approach to approximat-
ing the String Subsequence Kernel (SSK) by Lodhi et al. (2002). The resulting
kernel, SSK-LP for short, is implemented in Java and available as a part of
the WEKA data mining platform.18 Our runtime and space complexity mod-
els allow to compute the expected runtime and memory consumption for both
variants, and would even allow an automatic choice between the variants based
on input data and given parameter settings.

We have investigated both variants on several learning tasks and noted
that the string kernels are most useful for string classification tasks where
a tokenization is not easily apparent, and as similarity measure for redun-
dancy clustering. The given runtime models usually agree well with actual
runtime and have proven useful to determine the relative speedup of SSK-LP
versus SSK as well as to exclude some parameter settings because of exces-
sive runtime. Our work is therefore an important step towards the practical
applicability of string kernels for real-life learning tasks, and this approxima-
tion approach may prove useful for other complex kernels as well. Also, the
presented runtime and memory consumption models allow intelligent choice of
parameter values and subsampling sizes for a given time and memory budget,
which will help to apply both SSK and SSK-LP in practical applications.

We should note that in our real-life experiments, n-gram approaches were
found to be competitive, and their implementations can be made much more
efficient. More work is needed to improve SSK to take adequate advantage
of the capability to consider non-contiguous subsequences as well as towards
improving its efficiency.

Being the first algorithm for learning from sequences in WEKA, this opens
a new perspective for its users; moreover, the reduced complexity of SSK-LP
makes the Support Vector Machine approach a viable alternative for text min-
ing even on small devices with little main memory as it has a small constant
memory footprint. Last but not least the availability of an open source im-
plementation will hopefully motivate others to implement further kernels of
strings and other complex data structures for WEKA.

18 http://www.cs.waikato.ac.nz/~ml/weka. Use weka.classifiers.functions.SMO with ker-
nel weka.classifiers.functions.supportVector.StringKernel. -P 0 = SSK, -P 1 = SSK-LP.
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