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Abstract

Here, we present a constrained object recognition task that has been

robustly solved largely with simple machine learning methods, using a

small corpus of about 100 images taken under a variety of lighting con-

ditions. The task was to analyze images from a hand-held mobile phone

camera showing an endgame position for the Japanese board game Go.

The presented system would already be sufficient to reconstruct the full

Go game record from a video record of the game, and thus is comple-

mentary to (Seewald, 2003) which focuses on solving the same task using

1



different sensors. The presented system is robust to a variety of light-

ing conditions, works with cheap low-quality cameras and is resistant to

changes in board or camera position without the need for any manual

calibration.

Keywords: Object Recognition, Machine Learning, Computer Vision, Ap-

plied Research

1 Introduction

We present a multi-strategical approach to multi-object class detection under

constraints, more specifically the recognition of board states of the Japanese

game of Go from still images. Research in the field of Machine Vision has for

example focused on generating useful features from images for purposes of object

recognition (e.g. SIFT (Lowe, 2004), Radial Symmetry Transform (Loy & Zelin-

sky, 2003)), on image classification with a small set of classes (e.g. handwritten

digit recognition with Convolutional Networks (LeCun et al., 1998) or Support

Vector Machines (Seewald, 2005)), or on image similarity for purposes of search-

ing (e.g. Wavelet Transform (Jacobs et al., 1995)). There are also algorithms

for several standard tasks in image preprocessing, e.g. the Canny Edge Detector

(Canny, 1986), the Harris Corner Detector (Harris & Stephens, 1988) and the

Generalized Hough Transform for detecting arbitrary objects (Duda & Hart,

1972), which are widely used. Machine learning is also widely used within this

research field, but conventional methods focus on using a single learning system.

Here, we focus on a multi-strategy approach, which combines several learning
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systems that are applied in sequence, using diverse input data representations.

While the system strongly relies on already known object recognition schemes

using SIFT keypoint descriptors (used e.g. in (Mikolajczyk, Leibe & Schiele,

2006)), Canny Edge Detector algorithm and pixel-based representations, and

uses logistic regression and Support Vector Machines (SVM) as learning sys-

tems, we believe that the combination as sequential ensemble is novel. The

board recognition algorithm from Section 4.3 is clearly novel as it is based on

ad-hoc programming, but constitutes the weakest link in the system. Lastly, the

achieved performance is quite good and constitutes both the first quantitative

result reported for this specific task as well as the first with sufficient perfor-

mance to be applied in practice. One major reason for the observed performance

is that we utilized the regular board structure to filter the output of the object

recognition modules and thus simplified the task beyond a usual multi-object

recognition task where such structure is usually not present.

The task of extracting arbitrary information from images in a general setting

can be greatly simplified by controlling lighting conditions and camera position.

Just calibrating a given image processing system to a new uncontrolled envi-

ronment may take several hours and can be a painstaking manual process.1

In order to improve on the state-of-the-art by building more robust systems

that work well under a variety of lighting conditions, we have focused on a more

challenging object recognition task. It should work without manual calibration
1Personal communication by Dr. Markus Würzl of the award-winning Robo-Cup team

Austro, Institute for Handling Devices and Robotics, Vienna University of Technology.
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and under uncontrolled lighting conditions. The camera position is different for

each image, as the capture device is a hand-held mobile phone camera. No flash

was available. The picture quality is mediocre at best and only offers 640x480

(0.3 megapixel) resolution. The game board is a common woodden Go board

with white and black stones. For reasons which have to do with an earlier

project, where we built an embedded device to record moves with a sensor

array (Seewald, 2003), we used an 8x8 board instead of the more customary

9x9, 13x13 or 19x19 sizes. In this earlier project, the 8x8 size was forced on us

due to hardware restrictions.

We will proceed to describe two variants of the system that are able to

correctly recognize between two thirds and three quarters of still images showing

Go board endgame positions without errors, and misclassify two to four of the

64 board positions per image in the remaining images, yielding an overall error

per board position of between 0.8% and 2.03%. The faster worse-performing

system can process one frame about every five seconds with some additional

optimizations. We expect that this system would be able to recognize at least

98.39% of full game records from a real-time analysis of a game’s video stream

under reasonable assumptions.

2 Related Research

(Mikolajczyk, Leibe & Schiele, 2006) present an approach for simultaneous

recognition and localization of multiple object classes and as such are similar to
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our approach. However, while they use PCA and a tree structure, we use the

full 128-dimensional SIFT keypoint vector and a SVM classifier. Our approach

also differs in that we use the known structure of the board as a regular grid

and thus constrain the position of stones, which greatly improves recognition

performance.

(Scher, 2006) propose a system to determine the whole Go game record from

analysis of the video stream from a fixed camera. Initially, board corners are in-

put by the user and perspective correction is applied. Here, our approach differs

as we recognize board corners automatically, separately for each image. Then,

Sobel edge filter followed by Hough transform for circles was used to detect

stones in the images. This was also the first approach we tried, but perfor-

mance of Sobel was clearly inferior to parameter-optimized Canny. The author

seems to agree, as this was called a weak classifier due to its high error rate. To

prevent frequently occurring misclassification of hand and stone movements2,

optical flow analysis was applied to determine areas of strong movement, where

the output of the stone detector was ignored. The Viterbi dynamic program-

ming algorithm was applied to construct a likely sequence of moves, given the

noisy outputs of stone and motion detector. This proved to reduce noise sig-

nificantly, due to the high redundancy of the video signal. While the resulting

system is probably not competitive to our approach in terms of accuracy (no

quantitative results are given; tested only on a single video sequence), it would

2During capture in Go, a set of stones are taken from the board. Players will also occa-

sionally adjust stone positions during normal play, thus touching their own and enemy stones

for a short time period.
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be feasible to apply our system to video analysis using a similar approach to im-

prove performance further. It also opens up the intriguing possibility to combine

our approach with sensor data from the original Intelligent Go Board project

(Seewald, 2003).

(Deuk-Cheol et al., 2005) discuss a simple system to extract Baduk (Chinese

for Go) game records from TV programs. They use horizontal and vertical

histograms after application of a Roberts edge detector to find the board, and

size/shape constraints (e.g. board must be square, minimum size, minimum

distance from border) to drop video frames where the board is obscured by the

players’ hands. A simple iterative algorithm is then used to determine brightness

intervals for black and white stones, and the brightness interval outside these

areas is analyzed to determine horizontral and vertical lines within the board

by periodicity. There is no quantitative evaluation – they just state it “works

pleasingly” – but it seems that at least in some cases recognizing the board

does not work well, which would be expected from these simple methods. They

only show opening game records where such a approach works best due to the

small number of stones on the board (which creates a clear line signal), so their

approach might need some finetuning to work throughout a full game.

(Hirsimäki, 2005) describes a system to recognize Go board states from single

images. It uses the Hough Transform for lines and some subtle filtering to

determine playing field position, which only works if there are not too many

stones on the central lines. This weakness makes it unsuitable for a typical

endgame position, which is consistent with the observation that one of our
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preliminary approaches using Hough transform for lines also failed there. He

proposes a linear 5x5 filter to detect stones and lines, which incorporates domain

knowledge and thus might be interesting to compare to our optimized Canny.

There is no quantitative evaluation, but as the six shown images are of quite

high quality and taken under good lighting conditions, we would be bound to

expect that it does not quite reach the performance of our system.

(Shiba & Mori, 2004) describe a system that uses genetic algorithms to

detect the contour of a Go-board and which they claim works reasonably well.

However, they just evaluate this first step and do not propose a full system as

we do here. Also, competitive faster alternatives such as Hough transform for

lines were not considered.

(Ball, 2004) describes a system written in Perl, available from CPAN as

Games::Go::Image2SGF, which also aims to recognize Go board states from

single images. It uses a simple sampling approach to distinguish white, black

and empty stones. However, the user has to specify the four corners of the board

manually. After this a simple 3D model based on barrel distortion is applied, and

at each grid point, a small circular area of pixels is sampled. The author claims

that the simple sampling approach should suffice for stone detection, but this has

not been tested comprehensively.3 However, for the stated purpose of analyzing

video streams of Go games, a simple approach might suffice, because the video

signal has so much redundany, and additional constraints on permissible moves

can be applied – similar to (Scher, 2006) above.

3Pers. comm. by the author.
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(Lowe, 2004) describe the Scale Invariant Feature Transform (SIFT), which

is a state-of-the-art keypoint descriptor. Given an image, it is sampled at mul-

tiple scales and robust keypoints are extracted, which are then described by

scale, orientation and a 128-dimensional keypoint descriptor. We use the 128-

dimensional keypoint descriptor to classify keypoints into one of several classes

related to relevant board objects such as stones, crossings, and borders, and

use scale and orientation for filtering stones as well as determining the local

orientation of t-segments.

(Loy & Zelinsky, 2003) describe the Radial Symmetry Transform, which is

a keypoint detector for radial symmetry. It is quite fast and could easily run

in real-time on video data. The Radial Symmetry Transform would be much

better suited than SIFT to recognize white and black stones, but would also

be much less well suited to recognize crossings and corners which are by their

nature not radially symmetric. Another disadvantage is that it does not return

a keypoint descriptor which is likely to be necessary for further filtering, and

might be more costly to compute than our approach of parameter-optimzed

Canny plus local Hough transform for circles.

3 Data Collection

Here, we describe the data collection of training and test images, and show some

real-life sample images from our corpus.

Initially, we utilized six images previously recorded under arbitrary lighting
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conditions with arbitrary game positions, which had been used as testcase for

the Intelligent Go Board project. These were the base for initial experiments

on the feasibility of the whole task.

Afterwards we opted for a more systematic approach, and let the Computer

Go player Gnu Go 3.6.4 play against the author ten times with different ran-

domization settings, afterwards recording the ten different endgame positions.

Each of these was then a) used as is; b) rotated by 180 degrees; c) inverted (i.e.

switching black and white stones); and d) rotated and inverted. This yielded

four times ten representative endgame positions for our experiments. The rea-

son for using endgame positions is that for these it is hardest to find the board

position using the Hough transform for lines, which has been previously applied

to this task. This approach also ensures a reasonably equal number of black

and white stones and empty positions, whereas at the beginning the number of

empty positions is much larger.

We recorded images under five different lighting conditions: bright daylight,

daylight on a cloudy day, halogene lamps, halogene lamps plus cloudy day-

light, and flourescent indirect lighting. For each board position, we recorded a

hand-held photo from each player’s side, yielding around 20 photos per lighting

condition (either (a) & (b), or (c) & (d), as we randomly chose to use either only

normal or only inverted endgames for each lighting condition). All photos from

one lighting condition were recorded in one setting taking less than 20 minutes.

Some photos had to be removed because the board was cut off or distorted too
4Available under http://www.gnu.org/software/gnugo

9



Lighting condition Training Size Test Size Sample image

Initial (uncontrolled) 6 0

Bright Daylight 10 10

Cloudy Daylight 8 9

Halogene Lamps 10 10

Halogene Lamps plus Daylight 14 9

Flourescent indirect 9 9

Table 1: Training and test sets by lighting conditions.

much, so that some stones were no longer visible. Table 1 shows an overview of

the training and test sets with sample images.
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The images were randomly distributed into training and test sets. For Halo-

gene Lamps plus Daylight, we biased this to ensure approximately the same

number of test images as for the other lighting conditions. We manually marked

the corners of each board and each board position by type (white stone, black

stone, or crossing (empty) – see also Figure 2) and its exact position within

the image. For keypoint classification, it proved essential that the position of

each crossing, T-segment and corner is known as precisely as possible. Black

and white stones proved to be less sensitive to exact positioning and keypoints

further away could successfully be assigned to these classes. As is customary,

the training data was used to optimize and finetune the system while the test

data was used at the very end to get a reasonable estimate of the system’s

performance on unseen data. For reasons of data utilization efficiency, we did

not use a separate validation set. Note that we did not give information about

lighting conditions to the learning systems, or use it in any other way for op-

timizing the system. The rationale for this was to force the learning systems

to build models independent of lighting conditions (in some cases simplified by

using SIFT keypoint descriptors as input), and as we shall see later this seems

to have worked.5

5In one small unsystematic experiment, we found that adding a field encoding the lighting

condition to the training data roughly halved(!) the error rate of the learning system.
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4 Final System

Our rationale for creating the system was to start with a reasonably simple

learning task (such as multi-object classification using SIFT keypoint descriptors

as input to a learning algorithm), and then continue to add complementary

learning tasks until the desired performance was reached. Except for step 3.,

which still involves an ad-hoc board estimation algorithm, we have succeeded

in this. The final system consists of the following steps, which are executed in

sequence.

1. SIFT keypoint detection (Lowe, 2004) on a grayscale version of the orig-

inal image. We also considered (Loy & Zelinsky, 2003), but it could not

be used, because non-symmetric features such as crossings would not be

recognized, and no keypoint descriptor is returned for their approach.

2. Applying the keypoint classification model on all SIFT keypoints. The

model was learned from all training data.

3. Estimating board position (i.e. all four corners) by analyzing the structure

of classified keypoints. Afterwards, a 3D model is fitted to the corner

points to accurately estimate the position of each field on the board. Note

that for Go, a field is centered on the crossing between two lines. See also

Figure 2.

4. Stone detection via Canny edge detector and threshold on the proportion

of border pixels in a circular area centered around stone position. Param-

eters for canny and threshold were estimated from training data. Stone
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color (black, white) was computed via average brightness of circular area

around expected center.

5. Stone and empty field detection via keypoint classification. Only applied

for board positions not previously recognized.

6. Stone and empty field detection via model on average and standard de-

viation of brightness around the expected stone position. The model was

learned from all training data and was also applied only to remaining

board positions not previously recognized.

Note that steps 2., 4., 5. and 6. rely on machine learning algorithms which

learned from the training data. No work needed to be done on 1. – we used

the SIFT demo version as is – and thus 3. was the only step that involved

significant ad-hoc programming by the author. The implementations of all

learning algorithms are due to the open-source tool WEKA (Witten & Frank,

2005) and have been written in Java. Image processing was done via the open-

source java library ImageJ (Rasband, 1997-2006) and additional code due to

(Burger & Burge, 2006). A public domain Canny implementation by Mike Heath

(heath@csee.usf.edu) written in C was also used. As we already mentioned,

we used the freely available implementation of SIFT, which would need to be

licensed for commercial applications.

Figure 1 shows each step in turn with a sample image. Left-to-right, top-to-

bottom shows step 1 to 6: original image with keypoint as small white crosses;

keypoints classified as T pieces (on the border, >), corners (6 ), crossings(+)
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Figure 1: Steps 1-6 with sample images after each step, left-to-right, top-to-bottom.

and white/black stones (◦/•); final board position after step 3; output of Canny

edge detector and white/black stones; previous steps plus output from keypoint

model; and final output after applying last ditch model. We will now go through

each relevant step in turn. Section 4.X documents step X in detail.
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4.1 SIFT Keypoint Detection

Each image was transformed into grayscale. We ran the demo version of SIFT

from Lowe’s home page at http://www.cs.ubc.ca/∼lowe/keypoints/. Out-

put was a file containing all found keypoints with their scale, orientation and

128 element numeric description vector.

4.2 Keypoint Classification

The first task was to find out where the board appears in the image. We soon

found out that it is far from trivial to distinguish crossings (.), border pieces

(T), corners (C), black stones (B) and white stones (W), and of course irrelevant

keypoints (N) from one another. Figure 2 shows a sample image with examples

for all keypoint types for clarity. See also top-left of Figure 1 for a real-life

example.

(Lowe, 2004) describes an approach for object recognition that uses one pro-

totype per class.6 By computing the Sammon map (Sammon, 1969), which

is a non-linear distance-preserving mapping from high-dimensional into low-

dimensional spaces, we can see that this approach is not sufficient. The visualiza-

tion of 128-dimensional keypoint space into two dimensions with stress=0.0814,

see Figure 3, confirms that a more elaborate approach is needed to distinguish

all the categories, as e.g. corners, T segments and crossings are overlapping to a

large degree. Note that the irrelevant keypoints are not shown here for clarity,

but are in the vast majority with 91.1% of all keypoints, thus creating a further
6This is equivalent to coarse instance-based learning with one example per class.
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Figure 2: Sample image with keypoint types.
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Figure 3: Sammon mapping of the keypoint space, stress=0.0814.

challenge.

Therefore, we used the full 128-element numeric keypoint description vector
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from SIFT as input into a Support Vector Machine learning algorithm trained

via Sequential Minimal Optimization (Platt, 1998) whose task was to predict

the different categories. This worked very well already with a linear kernel, and

the error rate could be approximately halved by parameter optimization.

Training data was automatically generated from the tagged training images

and the output of SIFT. For corners, T segments and crossings, all keypoints

within 1/16th of the field size (around 1-2 pixels) were considered relevant; and

for black and white stones, all keypoints within 1/3rd of field size and with a

scale of between 1/4th and 1.1 of field size were considered relevant. All other

keypoints were considered to be irrelevant. Top-right of Figure 1 shows the

results of applying the learned model on a real-life image.

4.3 Estimating Board Position

The keypoint model gives us a good but not perfect list of candidate corners,

crossings and T segments. Since all four corners are needed, simply using the

keypoints classified as corners is not sufficient, as there may be no keypoint

corresponding to a specific corner (e.g. top right of Figure 1 misses two corners).

We chose the more robust approach of utilizing the T segments, of which there

are up to 6 per board side. Additionally, we found that the orientation of the

border pieces according to SIFT was a very good approximation of the direction

of the local border line, although it could be 180 degrees minus the orientation

angle in some cases.

We began by considering each T segment separately as two candidate lines
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with orientations of angle and 180 minus angle, respectively, and incrementally

combined them with new T segments when they were less than 16 pixels apart.

After each combination, the line was recomputed via linear regression on all

constituent T segments.

Afterwards, we removed all lines which were less than 80 pixels from the

center of the image, thus utilizing a reasonable constraint on minimum board

size. Lines with two or more T segments were retained. Those lines with only

one T segment were only retained if a corner, a crossing, a white or a black

stone, was less than 32 pixels away from the line by normal distance, thus

lending independent support to the line.

This approach yielded the four border lines in most cases. In case there

were more than four lines, we removed those nearest to the center until there

were only four lines. In case there were three lines, we searched for a single

crossing on the open side (where there is no line), which is farthest away from

the line on the opposite side. In case of success, the orientation of the new line

was set to 180 minus the angle of the opposite line. With less than three lines,

no further analysis was possible and the image analysis failed. If successful,

pairwise crossings between lines were computed to get the corner points.

This complex approach worked for all but 3 (6%) of the 47 test images, and

for all but one of the training images. Given that 12 (27.3%) of the remaining 44

test images were not perfectly classified (i.e. had at least one position wrong),

these failures of the board estimation algorithm do contribute towards to the

overall error rate. However, when analyzing video, estimation of board position
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can be stretched over a longer period and thus can easily be made more stable,

reducing this effect.

Initially, we interpolated linearily in two dimensions between the corner

points to get the position of each field. However, this only works well if the

board is relatively flat. Given known constraints on board size and aspect ratio,

it was feasible to estimate the 3D position of each corner point by dynamic pro-

gramming, and do a linear interpolation in 3D space which was then projected

back into 2D space.

As final step, we recomputed all board lines where more than four crossings

(according to the keypoint model) were within 16 pixels of the line. The result

is a very good approximation of true board field positions, see also Figure 1,

left image in middle row.

We are aware that this crucial step is only indirectly dependent on training

data (by trial-and-error modifications of the algorithm) and as such is much

harder to adapt to different tasks. Also, its performance is clearly below that

of the other learning modules, but we found it quite hard to formulate this task

as a learning problem. Still, we would like to point out that this step is the only

step of our system that uses an ad-hoc algorithm.

4.4 Stone Detection

While the performance of the keypoint model concerning black and white stones

was quite good, it was not perceived good enough for the given task, and there

was also the problem that a nonnegligible proportion of stones did not yield any
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keypoints at all and thus could not be detected via keypoint classification. We

speculate that the uniform isotrop shape of the round stones makes them less

significant for SIFT, and thus less likely to generate keypoints. For this specific

task, (Loy & Zelinsky, 2003) propose a keypoint detector based on radial sym-

metry, which might have performed better. However, no useful implementation

was readily available.

In initial experiments, we used a Hough transform for circles on an image pre-

processed by the Sobel Edge Detector. However, as Sobel has no user-definable

parameter to optimize, we switched to the state-of-the-art edge detector Canny

and optimized its three parameters sigma, t low and t high on training data.

Performance was measured by determining the optimal threshold on the pro-

portion of border pixels within a circle around the known stone position, and

using this to compute the number of erroneous classifications. The parameter

set with the smallest number of errors was chosen.

We replaced the global Hough transform with a more efficient local variant,

which only searches for circles in the vicinity of the estimated position (±1/3rd

of field size). Once the existence of a stone has been verified, the average

brightness around its estimated central position is used to determine whether it

is a black or a white stone, or an erroneous classification in case of intermediate

brightness. Before computing average brightness, we applied a simple grayscale

histogram equalization operator.

While the above works very well in most cases, there will always be times

when a field type is not known after these steps. For this, we added two more
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modules to get a definitive board field type for each field position: re-utilizing

the keypoint classification model from 4.2 for stone and empty field detection,

and a Last Ditch Model for the remaining unknown fields, using average and

standard deviation of brightness of pixels in a window around the field position

as features.

4.5 Keypoint Model for Stone Detection

If the keypoint classification model from Section 4.2. predicts a stone or a

crossing near an unknown field position (less than half the local field size away),

we take its result as definitive. This model is only applied to those fields without

definitive outcome from any of the previous steps.

4.6 Last Ditch Model

In the case all above have failed, we still need a definitive outcome for all field

positions. We have therefore trained a Logistic Regression model (le Cessie &

van Houwelingen, 1992) on average and standard deviation of the brightness of

all pixels in a circle around the field position, using the full training data of all

field positions. The name Last Ditch Model was motivated by the fact that this

is really our final attempt to find out what the field position contains, i.e. a

last-ditch effort to work this out, which nevertheless is complementary to and

independent of earlier approaches to ensure independent errors.
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5 Results

We did two runs over test data: one with the linear SVM model for keypoint

classification, and one with the optimized SVM model.

5.1 Optimized SVM

The best SVM for this task was a polynomial kernel with degree 3, switched-on

feature-space normalization (−F ) and a cost parameter C = 10. Of the 47 test

images, 3 (6.38%) could not be analyzed because of problems in estimating the

board position (Section 4.3). Of the 44 remaining images, 5 had minor mis-

matches in estimating the corner positions which we disregarded. Nevertheless,

only 0.5±1.15 fields (out of 64) were misclassified on average per image. 72.7% of

the images were recognized with no errors, the remaining had 1.83±1.59 errors.

The optimized SVM learned its model in about one hour.

The 22 erroneously recognized field positions consisted of six errors due to

the keypoint model (Section 4.5); six errors due to the Canny Stone Detector

(4.4); and ten errors due to the last ditch model (4.6). The latter was used

113 times with an error rate of 8.84%, which is rather good for such a simple

system, but still falls short of the other modules’ performance.

The only disadvantage of this variant is that it is quite slow and takes about

114s per image, most of which is due to the optimized polynomial SVM.

Table 2 shows the results w.r.t. lighting conditions for the optimized poly-

nomial kernel. As can be seen overall error is very small and relatively uniform,

except for Halogene Lamps, which are by their nature spotlights and thus yield a

22



Lighting condition Avg.Err StD.Err Avg.Keypoint Avg.LastDitch

Bright Daylight 0.40 0.70 1.60 2.00

Cloudy Daylight 0.25 0.71 1.50 2.50

Halogene Lamps 1.44 2.13 3.11 4.11

Halogene Lamps & Daylight 0.22 0.44 0.67 2.00

Flourescent indirect 0.13 0.35 1.88 2.25

Table 2: Results for optimized SVM by lighting conditions: average and standard

deviation of error, applications of keypoint model (Sec. 4.5) and LastDitch model

(Sec. 4.6). Error are shown in field positions (e.g. 0.4 errors of 8*8 = 64 fields:

0.625% error)

radial pattern in brightness which makes the analysis harder. As support, note

that flourescent indirect lighting, arguably the most uniform lighting condition,

has the lowest error. We have also shown how often the last two steps (Sec.4.5

& 4.6) are invoked. Less than four out of sixty-four field positions per board

depend on these two steps on average (except for Halogene Lamps), but they

are nonetheless essential for good performance.

5.2 Linear SVM

For this, we used a linear kernel with C = 1. Of the 47 test images, 2 (4.25%)

could not be analyzed because of problems in estimating the board position

(Section 4.3). Of the 45 remaining images, 5 had minor mismatches in estimat-

ing the corner positions which we disregarded. 1.31±4.18 fields (out of 64) were

misclassified on average per image. 62.2% of the images were recognized with
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no errors, the remaining had 3.47±6.34 errors. All in all, the error rates are

approximately doubled versus the optimized SVM. The linear SVM learned the

model in about 7 minutes.

The 59 erroneously recognized field positions – almost three times the num-

ber from the optimized SVM – consisted of 13 errors due to the keypoint model

(Section 4.5); 16 errors due to the Canny Stone Detector (4.4); and 30 errors

due to the last ditch model (4.6). The latter was used 182 times with an error

rate of 16.48%, which again approximately doubles the error rate versus the

optimized SVM.

On the other hand, using the linear SVM reduces runtime to 8s per image, of

which 2s are taken by the demo SIFT version and another 2s from an inefficient

3D calibrating routine, so a runtime of 5s would be easily achievable for the linear

SVM by additional optimizations including using an optimized SIFT version.

Table 3 shows the results w.r.t. lighting conditions for the linear kernel. As

can be seen overall error is quite non-uniform – Cloudy Daylight and Flourescent

indirect perform much worse as with the optimized SVM. We speculate that

the linear kernel is less able to compensate for different lighting conditions as

reflected in the SIFT keypoint descriptors and thus the effects which are easily

visible for the optimized kernel cannot be distinguished her.

5.3 Comparison to other approaches

To enable a comparison of our system to other multiple object recognition sys-

tems, we have adapted the trained linear and optimized SVM for usage as object
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Lighting condition Avg.Err StD.Err Avg.Keypoint Avg.LastDitch

Bright Daylight 0.40 0.70 1.00 2.40

Cloudy Daylight 3.33 8.89 2.44 5.89

Halogene Lamps 1.33 2.00 1.78 4.89

Halogene Lamps & Daylight 0.13 0.35 0.25 2.38

Flourescent indirect 1.33 2.35 1.33 4.67

Table 3: Results for linear SVM by lighting conditions.

detectors.

Input were again the SIFT keypoint descriptors, and output was the class

of each keypoint (crossing, t-segment, corner, white stone, black stone, and

irrelevant). For clarity, we have only included one randomly chosen keypoint

per board field, although there usually were several. In case there were no

keypoints near board fields, we still counted these as legitimate objects and

computed recall accordingly including these missing board fields. We also had to

retrain both SVMs with an additional logistic model on the SVM outputs to get

useful probability estimates which had a slight negative impact on performance.

Note also that multi-class classification was done using the m-by-n methodology,

i.e. training any class vs. any other class, thus yielding 6∗5
2 = 15 binary SVM

models.

Figure 4 shows Precision-Recall for the linear SVM, and Figure 5 shows the

same for the optimized SVM. As you can see, optimizing the SVM has positive

effects on the recall at same precision – most curves move to the left – but

some classes have not improved (e.g. crossings and t-segments). It should be
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Figure 4: Precision-Recall curve for the linear SVM

obvious from these figures that without additional filtering, such as using two or

more co-linear t-segments, the object recognition performance is inadequate for

t-segments and crossings. However, for the other object classes the performance

is quite good and resembles state-of-the-art systems. Note that the vast majority

of keypoints (91.1%) were of type irrelevant (N), but both learning systems still

managed to sort them to the bottom in the majority of classes. Especially the

excellent performance for corners is quite surprising, as these were by far the

smallest class in training data.

It would have been nice to compare the object recognition performance of

this model with other recent systems for multiple object class detection such

as (Mikolajczyk, Leibe & Schiele, 2006). However, we were unable to obtain

an implementation of their work. Their quoted recognition times of 1-11s seem

comparable versus our linear SVM.
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Figure 5: Precision-Recall curve for the optimized SVM

6 Real-Life performance

It was our intention to create a system robust w.r.t. lighting conditions, and

we have largely reached this goal with the optimized SVM, albeit at a high

computational cost. The linear kernel is much less robust concerning lighting

conditions. We believe that the main reason for this robustness of the optimized

kernel is the collection of training and test data roughly equally distributed over

each lighting condition; the use of a non-linear kernel and parameter optimiza-

tion on this training data; and the use of SIFT keypoint descriptors as input.

As we mentioned, the optimized SVM variant is able to recognize 72.7%, and

the linear SVM variant 62.5%, of Go board images without error. This recog-

nition accuracy could easily be further improved by recording several images,

and taking the majority vote. Adding independent data on move positions,
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e.g. from the sensor array of (Seewald, 2003), would also improve recognition

accuracy.

We will now estimate the achievable recognition accuracy for the task of

recording a full Go game from image samples of the game which are processed

at maximum speed. For this, we must use the linear SVM variant. We assume

an optimized version with 5s runtime per image (i.e. 0.2 frames-per-second).

First, we note that Go is usually played on an 19x19 board, so we are basing this

analysis on the per-field error which is independent of field size. The estimated

probability of misclassifying a single field is thus equal to the per-field error:

probfield incorrect = 0.0203 (2.03%).

We assume a typical game to last 90 minutes, with 200 moves (100 for each

player), and each move taking around one second during which the per-image ac-

curacy is assumed to be 0% (i.e. no image is classified perfectly within this time

period). This means that there are on average 26 seconds between moves. We as-

sume that all errors are uncorrelated, so two correctly recognized field positions

at the position of the move suffice for correctly recognizing the whole move. For

a framerate fps of one-fifth frame per second (i.e. one frame every five seconds)

this gives a move accuracy of probat least 2 correct = 99.9998%, which translates

into a probability of probwhole game correct = 99.96% that the whole game is

correctly recognized. For majority vote (at least 3 out of the 5 recognitions

within 25s agree on the move) this would be probat least 3 correct = 99.9919%

and probwhole game correct = 98.39%. The practical performance is likely to

be higher, as there is a lot of redundancy between moves which this simple
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probabilistic derivation does not account for. The following formulas allow to

compute these probabilities for different values of k (i.e. desired minimum num-

ber of times the current move was correctly recognized), fps (fractional frame

rate of recognition in frames per second), and probfield incorrect (probability

that a single field is not recognized correctly). These formulas can also be used

to determine the usefulness of similar systems with known move-recognition

error rates and computation time to see whether their performance would be

acceptable for this task.

probat least k correct =
25fps∑
i=k

(
25fps

i

)
(1− probfield incorrect)

i×

× (probfield incorrect)
25fps−i

probwhole game correct = (probat least k correct images)
game length in moves

7 Discussion

Here, we aim to address some initial attempts to build the system and focus on

what we tried that did not work.

Initially, we tested the Harris corner detector for Section 4.2, but its precision

was far too low and it does not output meaningful region descriptors as SIFT, so

the keypoint classification approach cannot be applied there. As is well-known,

the SIFT keypoint detector is superior to earlier approaches, so this did not

come as a surprise.
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We also tested the Hough transform for lines initially for 4.3., but found out

that for endgame positions, the board lines do not show clear enough patterns

to be of use. If we were to analyze a video stream from a fixed camera beginning

with the empty board, it would probably be feasible to use Hough transform to

determine initial board position. As a complementary approach to the board

estimation algorithm, this might show some promise, at least at the beginning

of each game. However, to use it as such would probably reduce the robustness

versus lighting conditions and camera position, which is why we refrained from

following this further.

One final thing we have learned here is that it pays off to have several

complementary modules which aim to solve the same task. A simple loop of

analyzing errors on training data, choosing the module which has the highest

contribution to overall error, and optimizing it, is very efficient in improving a

mediocre system towards good performance. Overfitting should be avoided by

using high bias learning algorithms, such as SVM with linear kernel and Logistic

Regression, or by using a separate validation set.

8 Conclusion

We have presented a multi-strategical multi-object recognition system for a

specific task, namely the recognition of final board position in the Japanese

Game of Go. The system is able to correctly recognize between three thirds

and three quarters of board positions perfectly under a large variety of lighting
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conditions and camera positions. We claim the following contributions to the

state-of-the-art for the presented system:

• High robustness versus changes in board position (auto-calibrating) and

lighting conditions (all but Halogene Lamps show very small per-field er-

rors of less than 0.4%), which has not been previously demonstrated for

this task. However, this comes at high computational cost.

• Excellent performance sufficient for real-life application as Go game recorder,

which has not be previously demonstrated for this task. Based on reason-

able assumptions, already the faster and less robust linear SVM system

could correctly record at least 98.39% of 19x19 Go games without any

errors based on a real-time analysis of the video stream.

• Developed using a small training corpus. Only 100 images were created,

half of them for training and half for evaluation – around 20 per lighting

condition. Previously published approaches in multi-object recognition

usually utilize much more training data for similar results.

• A practical application of diverse ensembles, where the different learning

systems are complementary and applied in sequence, so that the ensemble

is more accurate than any of its parts.

A exhaustive evaluation of robustness to lighting conditions versus design

choices for training learning algorithms and parameter optimization would be

useful, for example to investigate whether the same robustness can be achieved

with less computational effort. However, this would need a formulation of the
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board estimation task from Section 4.3 as a learning problem, which has so far

eluded our grasp. It should also be noted that for this purpose, the amount of

training data we have collected is probably not sufficient.
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