
On the Brittleness of Handwritten Digit

Recognition Models

Alexander K. Seewald

Seewald Solutions

Leitermayergasse 33, 1180 Vienna, Austria

alex@seewald.at

April 15, 2009

Abstract

Handwritten digit recognition is an important benchmark task in computer

vision. Learning algorithms and feature representations which offer excellent

performance for this task have been known for some time. Here, we focus on

two major practical considerations: the relationship between the amount of

training data and error rate (corresponding to the effort to collect training

data to build a model with given maximum error rate) and the transferra-

bility of models’ expertise between different datasets (corresponding to the

usefulness for general handwritten digit recognition). While the relationship

between amount of training data and error rate is very stable and to some

extent independent of the specific dataset used – only the classifier and fea-

ture representation have significant effect – it has proven to be impossible to

transfer low error rates on one or two pooled datasets to similarily low error

rates on another dataset. We have called this weakness brittleness, inspired by

an old Artificial Intelligence term that means the same thing. This weakness

may be a general weakness of trained image classification systems.

1

Keywords: Machine Learning, Computer Vision, Applied Research

1 Introduction

Intelligent image analysis is an interesting research area in Artificial Intelligence and

also important to a variety of current open research problems. Handwritten digits

recognition is a well-researched subarea within the field, which is concerned with

learning models to distinguish presegmented handwritten digits. The application

of machine learning techniques over the last decade has proven successful in build-

ing systems which are competitive to human performance, and which perform far

better than manually written classical AI systems used in the beginnings of optical

character recognition technology. However, not all aspects of such models have been

previously investigated.

Here, we systematically investigate two new aspects of such systems:

• Essential training set size, i.e. the relation between training set size and

accuracy / error rate so as to determine the number of labeled training samples

that are essential for a given performance level. Creating labeled training

samples is costly and we are generally interested in algorithms which yield

acceptable performance with the fewest number of labeled training samples.

• Dataset-Independence, i.e. how well models trained on one sample dataset

for handwritten digit recognition perform on other sample datasets for hand-

written digit recognition after comprehensive normalization between the datasets.

Models should be robust to small changes in preprocessing and data collection,

but this has not been tested before.1

1Unfortunately, preprocessing is in most cases not fully documented, which makes such an

investigation rather hard. We already did a short analysis on this issue in (Seewald, 2005) and

were quite disappointed. This paper can be seen as a systematic extension of our previous efforts.

2

For the first aspect, we have found that all three datasets considered here give

similar performance relative to absolute training set size. This indicates that the

quality of input data is similar for these three datasets. A relatively small number

of high-quality samples is already sufficient for acceptable performance. Accuracy

as a function of absolute training set size follows a smooth asymptotic behavior, in

which low error rates (below 10%) are reached quite fast, but very low error rates

are reached only after sustained effort.

For the second aspect, we were surprised to notice that none of the considered

learning systems were able to transfer their expertise to other datasets. In fact the

performance on other datasets was always significantly worse or unacceptably high.

This may point to a general weakness of present intelligent image analysis sys-

tems. We have named this weakness brittleness in AI terminology, which seems to

us the most appropriate term.

Small differences in preprocessing methods which have not been documented

in sufficient detail (except perhaps in (Seewald, 2005)) may be responsible for this

effect. Another explanation might be that idiosyncrasies of the specific dataset

used for training are learned as well and hamper the generalization ability of the

underlying learning algorithm. This effect is observed independently of learning

algorithm or feature representation.

A more detailed documentation of preprocessing methods and classification sys-

tems in the form of Open Source code would be needed to investigate how to build

more robust learning system for this domain, and possibly for intelligent image

analysis systems in general.

3

2 Related Research

(Seewald, 2005) described the full preprocessing of dataset DIGITS, and noted early

results of the experiments within this paper.

(Simard, Steinkraus & Platt, 2003) also reported extensive experiments, noting

that simpler convolutional neural networks than the one used by (LeCun et al.,

1998) might suffice. However, since they did not contribute code for their learning

and preprocessing systems, we chose the implementation from (Mike O’Neill, 2006)

which is freely available for research purposes.

(Liu et al., 2003) reported a comprehensive benchmark of handwritten digit

recognition with several state-of-the-art approaches, datasets, and feature repre-

sentations. However, they analyzed neither the relationship of training set size vs.

accuracy/error nor the dataset-independence of the trained models, which are our

two main contributions.

(LeCun et al., 1998) introduced convolutional neural networks into handwritten

digit recognition research, and demonstrated a system (LeNet-5) which can still be

considered state-of-the-art.

(Liu & Fujisawa, 2005) notes open research questions and also proposes con-

tributing open source software for standard preprocessing methods. However, nei-

ther do they offer their own extensive code as open-source, nor do they note the

dataset-independence issue we have noted here, although it is clearly a major issue

in the practical application of such systems.

3 Experimental Setup

3.1 Datasets

We used two well-known (USPS, MNIST) and one relatively unknown (DIGITS)

dataset for handwritten digit recognition. The relatively unknown dataset was

4

created by ourselves, so we had complete control and documentation over all pre-

processing steps, documented in (Seewald, 2005).

The US Postal (USPS) handwritten digit dataset is derived from a project on

recognizing handwritten digits on envelopes (Hastie et al., 2003; Hull, 1993). The

digits were downscaled to 16x16 pixels and scaled without distortion (i.e. retaining

the aspect ratio; 1:1 scaling). The training set has 7291 samples, and the test set

has 2007 samples. Fig. 1 (left) shows samples from USPS. For the experiments

in 4.1, we used USPS as-is – for 4.2, we used a reformatted version which mimics

MNIST preprocessing by rescaling and shifting center-of-gravity.

The MNIST dataset, one of the most famous in digit recognition, is derived

from the NIST dataset, and has been created by Yann LeCun (LeCun et al., 1998).

According to this paper, the digits from NIST were downscaled to 20x20 pixels and

centered in a 28x28 pixel bitmap by putting center-of-gravity of the black pixels in

the center of the bitmap. It has 60,000 training and 10,000 test samples. Fig. 1

(right) shows samples from MNIST. It can be seen that MNIST has about 1%

segmentation errors (e.g. column 4, row 4 is a badly segmented four)2. However,

this cannot explain the performance differences between the systems reported in 4.2

as those comparisons not including MNIST fare as poorly as those that do.

The DIGITS dataset was created in 2005, based on samples from students of

a lecture given by the author. Each student contributed 100 samples, equally dis-

tributed among the digits 0 to 9. The complete preprocessing is described in (See-

wald, 2005). Students were given the choice to withhold the samples, to allow

usage of the samples by the author of this paper, and to allow usage by anyone

(i.e. public domain). 37 students opted for the latter option. These were randomly

distributed into training and test (19 training, 17 test), yielding 1,893 training and

2These samples actually come from the supposedly cleaner part of the test set by Census

employees, SD-3, which indicates that the proportion of segmentation errors for the remaining

dataset may even be higher.

5

Figure 1: Left: USPS, Right: MNIST

Figure 2: Left: digits (b=2.5, arb.scal.), Right: digits (b=0.5, 1:1 scaling)

1,796 test samples after minor cleanup. The dataset can be freely downloaded from

the authors website, http://alex.seewald.at.

Fig. 2 (left) shows the digit dataset with preprocessing optimized to improve

classification accuracy (namely, arbitrary aspect ratio – i.e. the digit is scaled to fill

available space; blurring with blur=2.5, no deslanting3), and Fig. 2 (right) shows the

same samples reformatted in a format easier to recognize for humans (1:1 scaling,

blur=0.5). Mitchell filter downsampling with integrated Gaussian blurring was used

in both cases.
3The digits were entered in a regular grid, and visual inspection showed the slant to be minimal.

6

3.2 Feature Sets

We considered two feature sets.

• Pixel-based, i.e. the pixel grayscale values in eight bit precision (0 = white,

255 = black to be compatible with MNIST) in the order from top left to

bottom right (784 numeric features)

• Gradient-based, i.e. a 200 dimensional numeric feature vector encoding

eight direction-specific 5x5 gradient images (same feature order as for above

images). This was one of three top-performing representations in (Liu et al.,

2003), and is called e-grg in their paper. We reimplemented e-grg from scratch

and validated on MNIST train/test with 1-NN, yielding a test error rate of

1.29% vs. the 1.35% reported in their paper with identical preprocessing.

Additional feature sets could have been considered, but we felt that these two

sets would be sufficient for the purpose of this paper.

3.3 Classifiers

We considered a variety of classifiers in three groups. All of the classifiers except

convNN were taken from WEKA(Witten & Frank, 2005).

3.3.1 Instance-based Learning

Initial experiments indicated that – probably because of the high number of classes

– a simple k-NN nearest neighbor classifier with k = 1 performed best. For the

gradient-based representation, only euclidean distance was considered. For the

pixel-based representation, we additionally considered the well-known template

matching method normalized correlation coefficient, and tangent distance, which

can cope with small template distortions. We used the GPL implementation by

(Keysers et al., 2004) and validated on their freely available samples. Both distance

7

measures were reimplemented in Java for use with WEKA.

3.3.2 Support Vector Machines

We also considered polynomial and RBF kernel support vector machines (SVM,

see e.g. (Platt, 1998)) classifiers, since these classifiers were two of the three best-

performing methods according to (Liu et al., 2003).

From earlier experiments we already knew optimized parameter settings for

this classifiers on the DIGITS training set. We extended these experiments and

determined similar optimized parameter settings for e-grg on the same dataset.

These were used to train all other datasets. A slight positive bias for DIGITS and

low-bias learning algorithms (such as RBF and polynomial SVM) may be present.

We also considered a linear kernel SVM with default settings (C = 1).

3.3.3 Convolutional Networks

The de facto standard for handwritten digit recognition is the convolutional net-

work (convNN, e.g. leNet-5) by (LeCun et al., 1998). As WEKA does not include

a convolutional network learning algorithm, and there is also none available by the

author of the mentioned paper, we had to resort to using the non-scriptable version

of the training algorithm by (Mike O’Neill, 2006). A set of manual experiments was

done to validate the implementation versus MNIST, and we did extensive experi-

ments for Section 4.2. Due to the non-scriptable version, we could not run learning

curves on this system. The CPU time would in any case have been exorbitantly high

at around 1,500 hours (2 CPU months) for learning curves on all three datasets.

Training was done using the following parameters, as these proved to give the

best results on the original MNIST training / test sets (according to (Mike O’Neill,

2006), validated by us)

• Initial learning rate: 0.001

8

• Minimum learning rate: 0.00005

• Rate of decay for learning rate, applied every two epochs until minimum

learning rate was reached: 0.79418335

• Run with elastically deformed training inputs for at least 52 epochs

• Run with non-deformed training input for exactly 5 polishing epochs with a

learning rate of 0.0001

4 Results

In this section, we will show the full results from our experiments.

4.1 Essential Training Set Size

This section is concerned with analyzing the relationship between training set size

and recognition accuracy, depending on dataset and learning algorithm.

4.1.1 Pixel-based Features

Fig. 3 shows the results for instance-based learning, and Fig. 4 shows the results for

SVM learning. Both experiments were run on pixel-based features from the three

datasets. The test set was fixed while the training set was downsampled to the

absolute number of training examples shown as X. The Y axis shows the accuracy

on the test set. Additionally, downsampling was randomized ten times, and the

standard deviation over these ten runs is shown as error bars.

When using instance-based learning, the three datasets perform remarkably sim-

ilar. Only for the tangent distance variant DIGITS performs noticably worse. We

presume this is due to the collection of this dataset, where digits had to be written

into a regular grid, which forced a very uniform orientation – and removed a factor

which tangent distance was constructed to compensate for.

9

When using SVM learning, the picture is similar, albeit less clear. Only for

the polynomial variant do we see very similar behavior on the three datasets. For

the other two variants, some differences appear. Especially MNIST performs very

badly with the RBF kernel variant. We presume that this is due to the high number

of variance in MNIST, and the higher number of parameters for the RBF kernel,

such that the amount of training data is no longer sufficient for stable parameter

estimation. Also, parameters were optimized for the DIGITS training set and this

may have lead to some overfitting.4 The polynomial kernel has the best accuracy

here, closely followed by the linear kernel. Because of the non-scriptable version for

convNN and its long training times, we could not test it here.

4.1.2 Gradient-based Features

In a second step, we analyzed gradient-based features. Since pixel-based features

are a very imprecise way to encode information about handwritten digits, we chose

to use direction-specific feature maps which have previously found to work best (see

Section 3.2).

Fig. 5 shows the results with instance-based learning. Here, we only used IBk

with one nearest neighbor as the other two distance measures are inappropriate

for non-pixel-based data. We again observe similar behavior for all datasets, at

a slightly higher level of accuracy than for the pixel-based features and the same

learning algorithm. Clearly, adding relevant background knowledge in the form

of tangent distance or normalized correlation distance measures is more helpful to

improve IBk than this alternative feature representation.

Fig. 6 shows the results with SVM learning. SVM results are clearly improved

throughout over all datasets. Also, we see a clear ordering for the right half of

each figure: MNIST performs better than USPS, and USPS performs better than
4Note that DIGITS is by far the most accurate algorithm for the RBF kernel variant.

10

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 200 400 600 800 1000 1200 1400 1600 1800

IBk1 euclidean

DIGITS
USPS

MNIST

 0.72

 0.74

 0.76

 0.78

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 200 400 600 800 1000 1200 1400 1600 1800

IBk1 NCC

DIGITS
USPS

MNIST

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 200 400 600 800 1000 1200 1400 1600 1800

IBk1 TD

DIGITS
USPS

MNIST

Figure 3: Abs. training set size vs. test set accuracy for pixel-based features on MNIST,

USPS and DIGITS (IBk variants)

DIGITS. For SVM learning, the alternative feature set representation improves the

results quite distinctly. Note also that just for 1,800 samples, we can have an error of

2% on the MNIST testset, which is quite good considering that the best published

11

 0.74

 0.76

 0.78

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 200 400 600 800 1000 1200 1400 1600 1800

SVM linear

DIGITS
USPS

MNIST

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 200 400 600 800 1000 1200 1400 1600 1800

SVM polynomial

DIGITS
USPS

MNIST

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 200 400 600 800 1000 1200 1400 1600 1800

SVM RBF

DIGITS
USPS

MNIST

Figure 4: Abs. training set size vs. test set accuracy for pixel-based features on MNIST,

USPS and DIGITS (SVM variants)

results are at around 0.5% and use orders of magnitude more training data. A

linear SVM with unprecedented processing speed is only slightly worse. It might

be that the higher accuracy of these systems has enabled us to see the hardness of

12

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 200 400 600 800 1000 1200 1400 1600 1800

IBk1 euclidean

DIGITS
USPS

MNIST

Figure 5: Abs. training set size vs. test set accuracy for gradient features on MNIST,

USPS and DIGITS (IBk variants)

the dataset – like the harder part of MNIST, DIGITS consisted of data contributed

by (university) students. USPS would then be between both datasets in terms of

sample complexity.

The shape of all learning curves is remarkably similar and might be estimated

with just a few data points. They seem to depend on the learning algorithm, the

feature representation, and to a lesser extent to the specific dataset in question (e.g.

dataset complexity, sample distribution, or other factors).

4.2 Dataset-Independence

All previous results mean nothing if the task has not really been solved. So, as it

is clear that – small differences between the datasets notwithstanding – all these

datasets deal with the writer-independent recognition of handwritten digits and

were created by disjunct sets of writers (which were also properly distributed be-

tween training and test set), we estimated the quality of each model by testing it on

the other datasets. First, we converted both DIGITS and USPS into MNIST format

by centering each digit in a 28x28 image, equalizing the histograms via non-linear

13

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 200 400 600 800 1000 1200 1400 1600 1800

SVM linear

DIGITS
USPS

MNIST

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 200 400 600 800 1000 1200 1400 1600 1800

SVM polynomial

DIGITS
USPS

MNIST

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 200 400 600 800 1000 1200 1400 1600 1800

SVM RBF

DIGITS
USPS

MNIST

Figure 6: Abs. training set size vs. test set accuracy for gradient features on MNIST,

USPS and DIGITS (SVM variants)

gamma correction.5 For DIGITS, we estimated center-of-gravity from the original

300dpi black-and-white images; for USPS, we estimated c-o-g from the grayscale

images after thresholding at 50% (128). In both cases 1:1 scaling was used (i.e. the

5USPS already was sufficiently similar, for DIGITS we used 75.6728812921072 ∗

v0.589737015486174, where v is the raw pixel value and the output is clamped to [0,255].

14

Figure 7: Left: USPS, Right: DIGITS, both reformatted to MNIST format)

aspect ratio was retained).

First, we trained on each training set in turn and tested on the other two sets.

Note that the training and test sets are of different size, so e.g. MNIST builds a

model from 60,000 samples while DIGITS just builds a model from about 1,800.

According to the results from the previous section, we would expect a range of about

one order of magnitude (best vs. worst) in error rates on the test set corresponding

to the training set, with MNIST better than USPS and USPS better than DIGITS.

This is exactly what we observed. Surprisingly, the performance on the other test

sets is much worse.

This time, we also tested LeCun’s original convolutional neural network model as

reconstructed by (Mike O’Neill, 2006). The results from training on the complete

training set with the training method described in part in (LeCun et al., 1998)

yielded error rates of 0.74% on MNIST-test, 1.72% on the full USPS dataset (i.e.

train and test combined), and 8.74% on the full DIGITS dataset. The error rate is

significantly higher for both datasets: about twice as high on USPS and more than

ten times higher on DIGITS.6 We also trained convNN with the same method and
6Although gamma correction results in digits which seem less similar to MNIST than the

original set by visual inspection, this proved to reduce the error rate of the original MNIST-

trained convolutional neural network by almost a third. On the other hand, although the aspect

15

Table 1: Dataset independence for pixel-based features, each dataset separately

Classifier Trained on Tested on Avg. error

MNIST DIGITS USPS vs. own testset

IBk1 euclidean MNIST 3.09 19.21 17.49 5.94x

IBk1 euclidean DIGITS 36.22 16.59 52.72 2.68x

IBk1 euclidean USPS 28.41 55.01 5.33 7.83x

IBk1 NCC MNIST 2.83 17.65 13.70 5.54x

IBk1 NCC DIGITS 32.42 14.14 44.59 2.72x

IBk1 NCC USPS 26.06 51.17 4.58 8.43x

IBk1 TD MNIST 1.51 13.53 5.63 6.34x

IBk1 TD DIGITS 25.88 10.02 37.77 3.18x

IBk1 TD USPS 10.51 36.47 3.64 6.45x

SVM linear MNIST 6.83 34.97 16.24 3.75x

SVM linear DIGITS 31.57 16.09 45.54 2.40x

SVM linear USPS 40.64 63.25 6.53 7.95x

SVM polynomial MNIST 1.27 16.20 11.56 10.93x

SVM polynomial DIGITS 30.05 11.47 47.68 3.39x

SVM polynomial USPS 44.78 74.33 4.43 13.44x

SVM RBF MNIST 4.31 53.34 20.78 8.60x

SVM RBF DIGITS 51.50 33.74 60.09 1.65x

SVM RBF USPS 81.05 89.98 7.37 11.60x

convNN MNIST 0.74 8.24 3.48 7.92x

convNN DIGITS 21.43 5.73 30.0 4.49x

convNN USPS 4.25 27.56 3.08 5.16x

similar settings both for DIGITS and USPS.

Table 1 shows the results for pixel-based features and Table 2 shows the results

ratio was lower by 12.5% for DIGITS, additionally compensating this increased the error almost

up to the original level. These anecdotes support our upcoming conclusion that performance is

very sensitive to a number of factors currently not well understood.

16

Table 2: Dataset independence for gradient-based features, each dataset separately

Classifier Trained on Tested on Avg. error

MNIST DIGITS USPS vs. own testset

IBk1 euclidean MNIST 1.29 12.08 5.98 7.00x

IBk1 euclidean DIGITS 21.91 7.29 37.62 4.08x

IBk1 euclidean USPS 10.30 33.07 3.49 6.21x

SVM linear MNIST 1.34 12.92 5.63 6.92x

SVM linear DIGITS 19.76 5.12 30.54 4.91x

SVM linear USPS 14.62 39.37 3.34 8.08x

SVM polynomial MNIST 0.47 8.07 4.43 13.30x

SVM polynomial DIGITS 17.81 3.67 24.86 5.81x

SVM polynomial USPS 14.68 39.03 2.79 9.63x

SVM RBF MNIST 0.57 8.30 4.28 11.04x

SVM RBF DIGITS 17.75 4.06 25.46 5.32x

SVM RBF USPS 14.89 40.03 2.79 9.84x

for gradient-based features. Both are showing error rates estimated on the respective

test sets, and the average error of the two other sets divided by the error on the test

set corresponding to the training set the model was trained on. What is immediately

apparent is that no combination of learning algorithm, feature representation and

dataset to train on was able to transfer the usually good results of its own test set

to the other test sets without a significant loss in accuracy. A small ratio such as

less than 2.0 is only obtainable for unacceptably high error rates. The lowest error

rate on any test set of 3.48% is achieved for convNN trained on MNIST and tested

on USPS. This still has more than twice this error rate (8.24%) on DIGITS, and

about five times the error rate on the MNIST test set (0.74%).

Second, we chose to also test combining two datasets and testing on the remain-

ing dataset. We downsampled the larger training dataset to the size of the smaller

17

training set and combined them, shuffling the results to prevent order effects. The

same test sets as previously were used. This time, we computed the error of the

remaining completely unseen dataset divided by the average of errors for the two

seen datasets (i.e. those whose training set was part of the dataset pool). Again,

convNN was trained on the same data.

Table 3 and Table 4 show the results for pixel-based and gradient-based features.

Again, we see that the error of the datasets who were part of the training is usually

much higher than the one on the completely unseen dataset. This is not true for

IBk with tangent-distance, where both for MNIST-DIGITS and USPS-DIGITS the

error on DIGITS testset is higher than the one on the completely unseen dataset.

This might be due to the small size of the DIGITS test set, which makes it error

estimates less stable. The same happens for SVM linear on USPS-DIGITS and

SVM RBF on MNIST-DIGITS and USPS-DIGITS.

The better gradient-based feature representation is probably responsible for pre-

venting such outliers in the second tables, as more stable models are learned. This

time, SVM polynomial and SVM RBF give the best performance (averaged over the

completely unseen test datasets’ error rates), closely followed by convNN which uses

pixel-based features. Still, this translates to an error of 5.94%, 10.75% and 5.94%

for MNIST, DIGITS and USPS, which is at least an order of magnitude higher than

the best results for handwritten digit recognition (reported on MNIST).

5 Conclusion

We have shown that relatively small amounts of training data are sufficient for

state-of-the-art accuracy in handwritten digit recognition, and that the relationship

between training set size and accuracy follows a simple asymptotic function.

We have also shown that none of the considered learning systems are able to

18

Table 3: Dataset independence for pixel-based features, two datasets combined

Classifier Trained on Tested on Error vs. avg.

MNIST DIGITS USPS of own testsets

IBk1 eucl. MNIST-DIGITS 9.23 18.32 25.56 1.86x

IBk1 eucl. MNIST-USPS 5.97 25.89 5.28 4.60x

IBk1 eucl. USPS-DIGITS 22.27 22.05 6.98 1.53x

IBk1 NCC MNIST-DIGITS 7.81 13.64 21.67 2.02x

IBk1 NCC MNIST-USPS 4.74 24.39 4.53 5.26x

IBk1 NCC USPS-DIGITS 18.95 15.53 6.98 1.68x

IBk1 TD MNIST-DIGITS 4.34 11.41 10.81 1.37x

IBk1 TD MNIST-USPS 2.65 16.09 3.64 5.12x

IBk1 TD USPS-DIGITS 9.61 14.09 4.53 1.03x

SVM linear MNIST-DIGITS 10.62 21.10 21.92 1.38x

SVM linear MNIST-USPS 12.27 43.10 8.27 4.20x

SVM linear USPS-DIGITS 20.37 23.83 9.67 1.22x

SVM poly. MNIST-DIGITS 4.96 8.85 16.54 2.40x

SVM poly. MNIST-USPS 2.66 22.16 3.89 6.77x

SVM poly. USPS-DIGITS 14.56 9.97 5.23 1.92x

SVM RBF MNIST-DIGITS 12.60 34.58 31.19 1.32x

SVM RBF MNIST-USPS 13.60 71.66 5.63 7.45x

SVM RBF USPS-DIGITS 39.89 47.38 7.03 1.47x

convNN MNIST-DIGITS 3.21 4.00 6.57 1.82x

convNN MNIST-USPS 1.25 11.85 2.74 5.94x

convNN USPS-DIGITS 7.03 5.79 4.88 1.32x

transfer their expertise to other similar handwritten digit recognition datasets. The

obtainable error rates are even in the best case far less than what has been reported

on single datasets. This indicates that systems learn significant non-task-specific

idiosyncrasies of specific datasets or not sufficiently well documented preprocess-

19

Table 4: Dataset independence for gradient-based features, two datasets combined

Classifier Trained on Tested on Error vs. avg.

MNIST DIGITS USPS of own testsets

IBk1 eucl. MNIST-DIGITS 3.58 7.41 9.87 1.80x

IBk1 eucl. MNIST-USPS 1.98 15.59 3.34 5.86x

IBk1 eucl. USPS-DIGITS 9.51 7.80 4.14 1.59x

SVM linear MNIST-DIGITS 3.43 4.79 11.01 2.68x

SVM linear MNIST-USPS 2.23 15.14 3.39 5.39x

SVM linear USPS-DIGITS 7.50 6.24 4.38 1.41x

SVM poly. MNIST-DIGITS 1.84 3.51 6.58 2.46x

SVM poly. MNIST-USPS 0.91 10.75 2.54 6.23x

SVM poly. USPS-DIGITS 5.94 4.45 2.94 1.61x

SVM RBF MNIST-DIGITS 1.88 3.51 6.98 2.59x

SVM RBF MNIST-USPS 1.00 11.53 2.44 6.70x

SVM RBF USPS-DIGITS 6.22 4.57 2.84 1.68x

ing methods, and do not yet offer stable dataset-independent performance. Thus

present systems can be considered brittle in AI terminology, albeit at higher per-

formance level than previous classical AI systems.

More work is needed to determine how to resolve this weakness. As a first

step, we propose a more detailed documentation of preprocessing methods and

classification systems in the form of Open Source code for further work in the field,

a more comprehensive sharing of both data and methods among active research

groups, and focussing specific efforts towards building more robust learning systems.

An investigation into specific preprocessing choices and their effect on accuracy

would be highly desirable and a major step to building systems with truly stable

dataset-independent performance.

20

5.1 Acknowledgements

We gratefully acknowledge the support of the students of AI Methods of Data

Analysis, class 2005. We also acknowledge Mike O’Neill, who has written and

validated the non-scriptable convolutional network code, which was used for our

convNN experiments - thanks, Mike, you saved us a lot of work. Finally, special

thanks to Julian A. for one important suggestion. This research has been funded

by Seewald Solutions.

References

Hastie, T., Tibshirani, R., Friedman, J.H. The Elements of Statistical Learning.

July 2003, Springer, Berlin/Heidelberg. ISBN 0387952845.

Hull, J.H. A Database for Handwritten Text Recognition Research. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, April 5, 1993.

D. Keysers, W. Macherey, H. Ney, and J. Dahmen. Adaptation in Statistical Pattern

Recognition Using Tangent Vectors. In IEEE Transactions on Pattern Analysis

and Machine Intelligence, Volume 26, Number 2, pages 269-274, February 2004.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. ”Gradient-based learning applied

to document recognition.” Proceedings of the IEEE, 86(11):2278-2324, November

1998.

Liu, L., Nakashima, K., Sako, H., Fujisawa, H. Handwritten digit recognition:

benchmarking of state-of-the-art techniques. In Pattern Recognition, 36 (2003),

pp. 2271–2285.

Liu L., Fujisawa, H. Classification and Learning for Character Recognition: Com-

parison of Methods and Remaining Problems, Proc. Int. Workshop on Neural

21

Networks and Learning in Document Analysis and Recognition, Seoul, Korea,

August, 2005.

M. O’Neill: Neural Network for Recognition of Handwritten Digits, Code Project,

2006. http://www.codeproject.com/KB/library/NeuralNetRecognition.

aspx (last visited 11.02.2009)

Platt, J. Fast Training of Support Vector Machines using Sequential Minimal Opti-

mization. Advances in Kernel Methods - Support Vector Learning, B. Schölkopf,

C. Burges, and A. Smola, eds., MIT Press, 1998.

Simard P.Y., Steinkraus D., Platt J.C.: Best Practices for Convolutional Neural

Networks Applied to Visual Document Analysis. Proceedings of the 7th Interna-

tional Conference on Document Analysis and Recognition (ICDAR 2003).

Seewald A.K.: Digits - A Dataset for Handwritten Digit Recognition. Technical

Report, Österreichisches Forschungsinstitut für Artificial Intelligence, Wien, TR-

2005-27, 2005.

Ian H. Witten and Eibe Frank (2005) ”Data Mining: Practical machine learning

tools and techniques”, 2nd Edition, Morgan Kaufmann, San Francisco, 2005.

22

