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Abstract— Analyzing in-situ tissue structures with complex
shapes and textures such as multinuclear cells or cells with-
out nuclei is still a challenge for currently available image-
processing software. This work aims to provide a versatile
system to solve such tasks provided that the structures of
interests were detected by immunofluorescence microscopy. Im-
ages were automatically acquired using slide-based microscopy.
Human domain-experts manually marked up tissue samples to
evaluate the performance of the computer generated masks.
From precision and recall a balanced F-score was computed to
measure the correlation between experts and algorithm output.
Exhaustive parameter optimization was conducted to ensure
that the optimal input parameters were applied during evalu-
ation of the developed algorithm. This procedure significantly
increased the performance compared to manually chosen input
parameters. We present an approach that can handle huge
tissue areas and does not rely on nuclei detection. Once a mark-
up has been created, the algorithm can be parameter-optimized
on ground-truth data for the chosen tissue sample. Thereafter,
the resulting settings could be applied automatically to the
respective stitched image. Concluding, we provide new insights
in physiological and pathopysiological cellular mechanisms by
automating the in-situ analysis of proteins in intact tissues.

I. INTRODUCTION

Automated microscopy technologies such as slide-based
microscopy allow high-throughput screens of large tissue
samples in an observer-independent and time saving manner.
Subsequently, these acquisitions have to be properly ana-
lyzed with adequate software tools that allow an observer-
independent and reproducible identification of cells, and
quantification of cell-associated markers. Such qualitative
and quantitative in-situ analysis are of growing importance
in both research and diagnostics. Though other biological
methods (e.g. Western Blotting) can also verify and quantify
protein expression in tissues, they require destruction of
tissue structure. Consequently, exact (sub)cellular localiza-
tion of target proteins is not possible any more, thereby
resulting in loss of information. Immunofluorescence mi-
croscopy combined with image processing overcomes this
problem. However, currently available software tools have a
very limited amount of analysis options for biologists. The
majority of software tools aim to detect the cell nucleus and
then try to grow from this seed until a certain border has
been reached (e.g. a cell membrane staining). Unfortunately,
not all cell types can be detected using that technique.
Among these are multinucleated cells found in tissues such
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as placenta and bone, but also in many tumors. The challenge
of developing software tools for such cells is the variety of
shapes and different sizes of these cell types, where most
of the common image-processing methods fail. To solve this
problem, a system that pursues a more human-like approach
is needed.

An important step following implementation of a new
algorithm is measurement of its performance. Usually this is
done by visual inspection and manual tuning of parameters
by the developer(s). A better way is for biological domain
experts to mark-up ground-truth data. The resulting mark-
ups are compared to automatically generated mark-ups by
the algorithm, thus ensuring that the newly developed tools
and the tissue experts produce comparable results. The latter
approach was used here.

A. Related Research

Automated microscopy-image analysis is a rapidly evolv-
ing research field. Huang and Murphy [6] described an
impressive image-understanding system that featured image
processing, classification, clustering and statistical analysis
of fluorescence images to determine the subcellular location
of proteins expressed in a certain cell type. Herold et al [5]
published a machine learning approach to automatically
identify biologically meaningful objects (in their case nuclei)
using a support vector machine. A method to detect Clathrin-
coated pits using Haar-like features that can deal also with
noisy data was published by Jiang et al [8]. Hamilton et al [1]
described another approach of an automated subcellular phe-
notype classification system and also made their image sets
publicly available to encourage further research to automated
cell-image analysis and classification.

II. MATERIALS

Placental chorionic villi (PCV) represent tissue-
substructures that are hard to analyze with commonly
available software. PCV exhibit large differences in size
and contain a multinucleated cell type, syncytiotrophoblast
(STB).

Localization and expression-levels of the vast amount of
PCV proteins can give new insights in physiologic protein
functions and mechanisms of pregnancy-related diseases [7].

III. AIMS

The aim of this work was to improve the quality of
in-situ studies concerned with automated localization and
quantification of proteins in complex tissues like the PCV.
Due to the fact that a typical PCV covers more than 80 fields
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of view, analysis had to be done on a stitched image instead
of separate fields of view.

IV. METHODS

Images were acquired with an upright microscope coupled
to a fully motorized stage using a 20x lens (nA=0.5) and
TissueFAXS as acquisitioning software. Paraffin-embedded
placentas were sectioned (4µm) and antigen retrieval was
performed. Unspecific binding sites were blocked and sec-
tions incubated with primary anti-Cytokeratin-7 (CK7) an-
tibody (Dako) and the respective fluorescence-conjugated
(Alexa Fluor-488) secondary antibody (Invitrogen). Nuclei
were labeled with DAPI (Roche) and samples embedded
in Fluoromount GTM (SouthernBiotech). Individual images
in the respective fluorescent channels were recorded and
pictures were sampled with an overlap of 50 respectively
30 pixels for stitching [2]. The images were acquired and
stored with lossless compression.

Fig. 1. Algorithm to detect syncytiotrophoblasts in placental tissue.
Histogram equalization is done beforehand.

To detect the STB and thereby the delimiting borders of
the PCV, specific staining of the STB-associated cytoskeletal
protein CK7 was used as starting point. Since CK7 marks
the entire STB-associated area, detection of cell nuclei is
not required and complex problems like the separation of
touching nuclei are avoided. Figure 1 shows the architecture
of the STB detector. First, a cumulative histogram equaliza-
tion over all images of the current acquisition was applied.
A histogram of an image with N possible intensity levels
is defined as the discrete function h(rk) = nk where rk is
the kth intensity level in the interval [0 . . . N ] and nk is the
amount of pixels in the image whose intensity level is rk.
These levels will be referred to as bins. Hence a cumulative
histogram counts the cumulative number of pixels for each
of the bins over all histograms. Let mj be a histogram and
i the total amount of bins then the cumulative histogram
Mi is defined as Mi =

∑i
j=1mj . Mi is then applied to

all images in an acquisition. The goal of this multi-image
normalization is remapping the image gray-levels to obtain
an uniform histogram which makes it easier to analyze and
compare different images.

Afterwards, a magnitude neighborhood filtering was ap-
plied that replaces each element by the surrounding neighbor
with the highest intensity. This image is then thresholded,
resulting in a binary image where 1’s mark areas containing
STB and 0’s represent background pixels. This binarization
may yield to small falsely detected spots resulting from dust
or unspecific bindings, so a clean-up step is required. This
step removes these artifacts of small size and inappropriate
shape by morphologically opening the binary image. Each of
these image-processing steps has a set of parameters. Tuning
them manually is tedious and may result in a suboptimal STB

TABLE I
POSSIBLE CASES DURING MARK-UP (1=STB, 0=BG)

Case Expert1 Expert2 Prop. on ground-truth
1 1 0 8%
2 0 1 5%
3 1 1 87%

mask. Therefore, all meaningful combinations of parameters
were evaluated to find the optimal set of parameters for a
given input image.

The specification of the server is as follows: Dual Quad-
Core Intel Xeon E5420 @ 2.50Ghz and 8 GB of main
memory running 64-bit Linux. Approximatively 8,100 dif-
ferent masks were generated in five days and automatically
compared with the ground truth created by two domain
experts. No user interaction was required during the whole
process.

V. RESULTS

Ground-truth data had to be generated to evaluate the
algorithm. Therefore, two human experts delineated villi
borders and STB areas on CK7 stained placental sections
on adjacent field of views (each 1392x1024 pixels). Both
domain experts have completed a natural scientific training,
being pathologist or cell biologist, respectively, with a main
focus on placental histology, function and pathophysiology.
The mark-up of our experts are shown in Figure 2 and 3.
Green indicates the inner STB border whereas red the outer
one.

A mask is derived from these annotations of both experts.
To compare our computer-generated results with the experts,
we combined (using logical OR) both expert masks. An
example mask is shown in Figure 4. Table I summarizes all
possible scenarios after an expert mark-up. An 1 represents
a pixel assigned to the STB by the corresponding expert
whereas a 0 indicates that this pixel was not labeled as
belonging to the STB. Evaluating the mark-ups of the two
domain experts yielded an agreement (Case3) of 87%. 8%
of the pixels from expert 1 were not marked-up by expert 2
respectively 5% of the pixels marked-up by expert 2 were
not marked-up by expert 1.

To achieve such an high performance with the developed
algorithm, the best parameter combination had to be found.
Therefore, an exhaustive parameter-optimization procedure
was performed by running the algorithm with a large set of
parameters combinations. In this evaluation task, the different
impact of each parameter on the final resulting villi mask
was measured. Comparison was done on pixel level. A pixel
of the output mask was counted as true positive (TP) if at
least one of the experts marked this pixel as belonging to the
STB. Analogous, a pixel that was not marked by either of the
experts nor the algorithm was counted as true negative (TN).
If only the algorithm detected the pixel as part of the object
then it represents a false positive (FP). If the algorithm did
not detect a pixel marked up by at least one of the experts,
it represents a false negative (FN). Precision and recall were
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Fig. 2. Example of a domain expert 1 mark-up on a CK7 labeled human
placental paraffin-section indicating villi as well as outer STB border in red
and inner STB border in green.

Fig. 3. Corresponding example of domain expert 2 mark-up on a CK7
labeled human placental paraffin-section indicating villi as well as outer
STB border in red and inner STB border in green.

Fig. 4. Overlap of domain expert masks generated by expert 1 (red) and
expert 2 (blue). Agreement of both experts is shown in green.

Fig. 5. Plot of Parameter 3 vs Parameter 5.

Fig. 6. Plot of Parameter 3 vs Parameter 7.

Fig. 7. Plot of Parameter 5 vs Parameter 7.
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then defined as Precision = TP
TP+FP , Recall =

TP
TP+FN .

In some fields recall and precision are called sensitivity
and specificity. From precision and recall, performance was
derived as balanced F-score:

Fβ = (1 + β2) ∗ precision ∗ recall
β2 ∗ precision+ recall

In our case β = 1 so recall and precision are evenly
weighted. The F-score was improved to 0.93 compared to the
manually chosen parameter set with 0.78. Reasoning from
the exhaustive-parameter optimization, only three (p3, p5 and
p7) of the initial seven parameters have a major impact on
the final STB mask quality. i/ p3: Size of mxm neighborhood
used in the maximum filter, ii/ p5: Threshold used for the
channel containing the staining to quantify, iii/ p7: Threshold
for morphologically opening the binary image.

We were also interested in the correlation of these three
parameters. Bitmap plots visualizing the correlation of these
three parameters can be found in Figure 5 to Figure 7 for
the respective parameter combinations. A legend matching
the colors to the performance is shown next to each figure.
From these figures it can be concluded that p3 and p5 have to
be chosen well otherwise a mask with a performance lower
than 75% will result. In contrast to this parameter tupel
the other two shown in Figure 6 and Figure 7 achieve a
performance of about 90%, even if we take the combination
with the lowest performance. This analysis is important for
later integration of this newly developed algorithm into a
graphical user-interface (GUI) that will be used by biologists,
so a focus on high impact parameters is desirable.

VI. CONCLUSIONS AND FUTURE WORK
A. Conclusion

We presented an algorithm to detect connected tis-
sue structures without previous nuclei detection. As large
amounts of images can now be acquired within short time,
analysis of huge connected tissue structures is of growing
importance and new algorithms are needed to overcome the
restrictions of nuclei-based detection. Furthermore, we eval-
uated this newly developed algorithm by using exhaustive-
parameter optimization. This process assured that the highest
possible performance of the algorithm was achieved. Addi-
tionally, it trimmed the amount of parameters, resulting in a
more manageable GUI.

A first application of this novel automated cell-detection
analysis was presented at the International Federation of
Placenta Associations meeting in 2009 where we analyzed
expression of a protein (RAGE, the receptor for advanced
glycation end products) in PCV [3][4]. The algorithm was
optimized on one subregion per placenta. Afterwards the
same settings were automatically used for the whole stitched
placenta image. One acquired placental section consisted of a
stitched 9x9 set of fields of view, respectively 12,528x9,216
pixels.

B. Future Work
Future work will concentrate on extending cell-detection

technologies so that also cell types containing multiple nuclei

(e.g. Osteoclasts) can be properly detected, analyzed and
quantified. With additional markers and one labeling per
structure further classifications (e.g. stem villi) could be
accomplished. Another cell type that cannot be detected
at present using nuclei based methods are of course cells
without nuclei. Erythrocytes are an example for this class and
detecting them can improve protein quantification accuracy
due to the high autofluorescence associated with erythrocytes
in various channels.

During our evaluation we weighted both domain experts
equally. In case of n experts (e.g. n≥3) different logical
combinations can make sense, e.g. weighting proportional
to expert level. Unanimous agreement as well as majority
voting are additional possibilities.
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