Towards an automated evaluation system of osteoclasts in cultures

Andreas Heindl, Martin Schepelmann, Alexander Seewald, Kathrin Burger, Radu Rogojanu, Rupert Ecker, Giovanna Bises, Peter Pietschmann, Isabella Ellinger and Theresia Thalhammer

Why use an automated evaluation system?

- Automated analysis produces consistent quantitative measures.
- Small differences not visible to the human eye but eventually linked to disease state, can be detected.

Measures each cell rather than producing a score for the entire image.

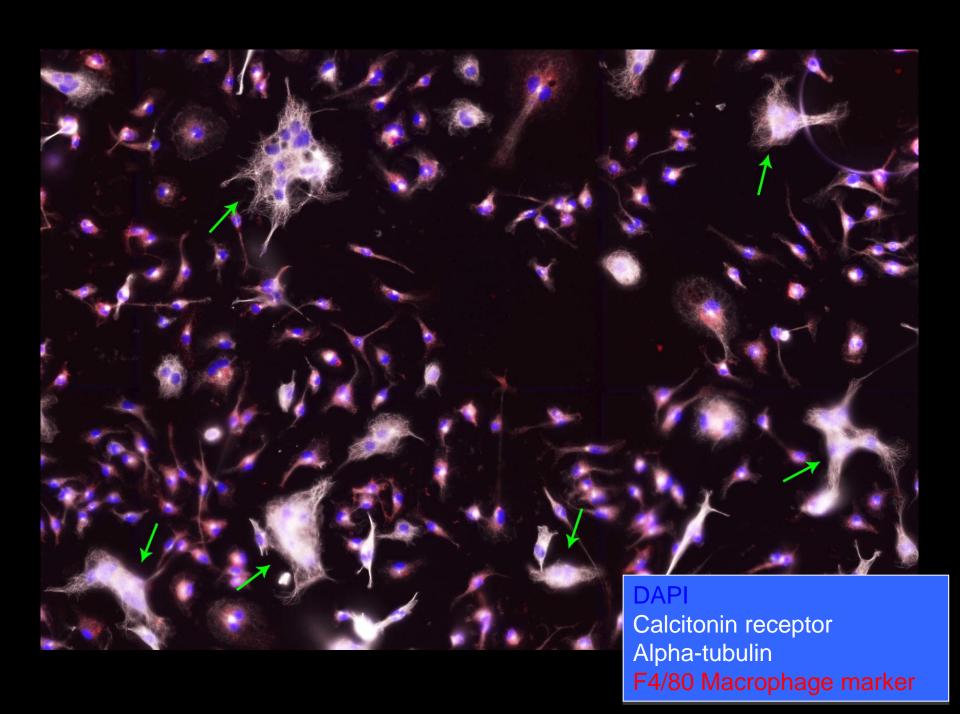
Why use an automated evaluation system?(ctd.)

- Immunofluorescence microscopy yields simultaneously many informative measures of cells (e.g. protein expression).
 - Major advantage compared to the commonly used histochemical TRAP (tartrate-resistant acid phosphatase) staining.
- Less labor intensive → higher throughput

~300 minutes -> ~15 minutes

manually

computer-based


(Region size: 13920 x 10240 pixel, 20x)

Staining of osteoclasts and precursor cells

Using an immunofluorescence staining protocol, osteoclasts cultures are stained as follows:

Precursor cells	
Nuclei	DAPI
Plasma membrane	Calcitonin receptor + Cy5
Cytoskeleton	Alpha-tubulin + Cy5
Osteoclast precursor cells	F4/80 Macrophage marker + TxR

Osteoclasts	
Nuclei	DAPI
Plasma membrane	Calcitonin receptor + Cy5
Cytoskeleton	Alpha-tubulin + Cy5

Algorithm to detect osteoclasts

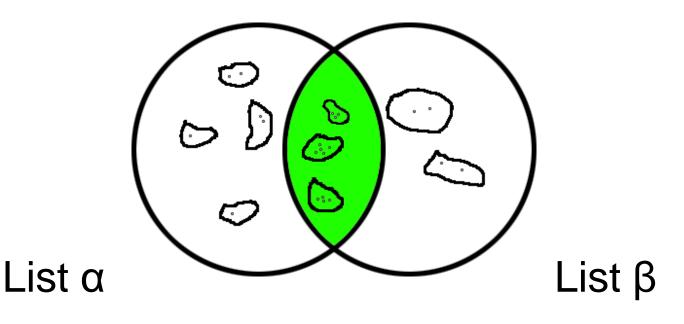
■ The specific staining of cells is used to classify cells in osteoclasts (F4/80-TxR – free) and non-osteoclasts (expression of F4/80-TxR).

Cells classified as osteoclasts have to fulfill two osteoclast specific criteria.

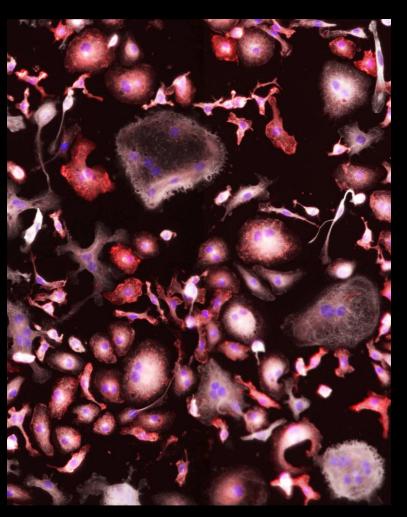
Algorithm to detect osteoclasts(ctd.)

 Criterion 1 computes the ratio of the macrophage marker inside the cell versus the total area of the cell:

If this ratio is lower than threshold T1 then the cell is added to the list α.


Algorithm to detect osteoclasts(ctd.)

Criterion 2 counts the amount of DAPI staining inside the cell:


If this amount is higher than threshold T2 then this cell is added to the list β.

Algorithm to detect osteoclasts(ctd.)

Finally, those cells that are contained in both lists (intersection of list α and list β) are added to the final output mask.

Resulting output mask

What can be measured?

- Area of (each class of) cells per slide
- Amount of nuclei (per cell)
- Cell features:
 - Eccentricity
 - Perimeter, ...
- Intensity-based features (e.g. protein expression)
 - Mean/Standard deviation
 - Entropy, ...

For preliminary results: "A novel method for automated quantification of osteoclasts in culture – Advantages, workflow and application" by Martin Schepelmann