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Abstract. This paper describes my solution to the CoIL! Challenge
2000. The challenge was to predict who would buy a Caravan insurance
and why. There were two subtasks: to predict caravan insurance owner-
ship and to describe caravan owners according to this prediction model.
My model was trained using a MetaCost[3] extended C4.5R8-clone and
achieved a score of 109 out of a theoretical maximum of 238 while the
winner achieved 121.

1 Introduction

In this paper I describe how I arrived at my solution to the ColL Challenge,
what methods and toolkits were used and some conclusions to be drawn from
this confrontation with real-life data.

The WEKA? environment was used for all experiments. The described algo-
rithms are all part of WEKA 3-1-7.

2 Initial considerations

At first glance it is quite problematic that there are only about 6% policy own-
ers? in the training data. Any reasonable learning algorithm will therefore always
predict CARAVAN=0, yielding an astounding accuracy of around 93%! To pre-
vent this, I tried the meta-learning scheme boosting[4] with various base learners.
The results were disappointing.

T also considered two types of cost sensitivity both of which strongly penalize

a prediction of CARAVAN=1 for non-policy-owners*.

! COmputational Intelligence and Learning Cluster (www.dsc.napier.ac.uk/coil)
which aims to achieve scientific, technical and “social” integration of fuzzy logic,
evolutionary computing, machine learning and neural networks

? Waikato Environment for Knowledge Analysis, available freely in source form at
www.cs.waikato.ac.nz, see also [5].

3 policy owners are instances with known class CARAVAN=1

% j.e. by giving each error that classifies a policy owner as CARAVAN=0 seventeen
times more weight that vice-versa and thus compensating for the a priori unbalanced
class distribution.



— to predict the class with the lowest misclassification cost (CSC?) based on a
classifier that outputs class distributions®. This worked very well for Naive-
Bayes as base classifier.

— to make the base classifier cost-sensitive using the method described in [3].
This worked very well for j48 (a C4.5R8-clone) as base classifier.

These two variants with cost-sensitivity, namely CSC-NaiveBayes and MC-j48
were used in all subsequent experiments due to their superior performance. Some
other algorithms were also evaluated in a less systematic way, the better ones
were often of comparable performance.

3 Feature subset selection

Initial experiments with all the data using various machine learning algorithms
yielded barely acceptable and unstable predictions. Therefore three sets of fea-
ture subset selections were considered. The first attribute index (MOSTYPE) is
considered 1.

— Subset DT: 1, 6, 12, 13, 16, 17, 21, 22, 24, 29, 30, 37, 39, 42, 44, 47, 54, 59,
61, 86 which was a byproduct of running a Decision Table learner[1]. This
is the final subset that was used by this learner on the training data. The
classifier DecisionTable itself predicted CARAVAN=O0 for all instances.

— Subset WrapperNB: 6, 8, 12, 13, 16, 21, 22, 24, 33, 38, 41, 45, 46, 47, 48, 49,
52, 55, 57, 58, 59, 60, 61, 63, 76, 79, 81, 82, 83, 86. This subset was generated
by a subset evaluation wrapper|2] for CSC-NaiveBayes. CSC-NaiveBayes was
used since it was the second-best algorithm but far less costly to train and
evaluate than MC-J48.

— Subset Comb: 1, 5, 6, 8, 12, 13, 16, 21, 22, 24, 33, 38, 41, 42, 44, 45, 46, 47,
48, 49, 52, 54, 55, 57, 58, 59, 60, 61, 63, 76, 79, 81, 82, 83, 86, 87, 88, 89
where attr. 86 = attr. 42 concatenated with attr. 47, 87 = 65 & 68, 88 = 42
& 68, 89 = class CARAVAN. These three combined attributes’ offered the
highest lift on the training data. This subset includes most attributes from
both wrapperNB and DT, some attributes were discarded and some were
added arbitrarily.

Various learning algorithms evaluated on these subsets by two-fold cross vali-
dation® with differently randomized datasets. Interestingly, Subset wrapperNB
was the best one but only slightly better than DT while Subset Comb was rather
worse.

5 after CostSensitiveClassifier in WEKA

5 Distribution classifiers do not output a single class prediction but rather probabilities
for every class.

" attribute names MINKGEM & PPERSAUT, AWAPART & APERSAUT,
MINKGEM & APERSAUT

8 This validation simulates the ratio of amount training data to test data which is also
about 1:1.



4 Polishing

As I found out after the challenge, now would have been a good time to stop and
submit a very good solution (a posteriori: 3rd place). Unfortunately I decided
to continue optimizing...

On analyzing the data I found many inconsistent instances (i.e. same values
for all attributes but differing values) and removed the minority class of them®
for training since they might confuse the algorithm. About 20% of caravan pol-
icy owners were removed this way. This increased validation and training set
performance slightly.

I also noticed that some evaluation set instances are identical to known in-
stances from the training set and thus can be classified simple by remembering
the whole training set'® and assigning the class from the identical training in-
stance. Thus T could classify 32 instances as CARAVAN=1 and 697 as CAR-
AVAN=0. This known evaluation subset was used for the final comparison of
learning algorithms although it was not truly “unseen data”. Unfortunately, only
seven of these 32 instances are actually caravan owners in the evaluation set. This
points towards noise in attributes and/or class values. It may also be the case
that there are simply not enough attributes to differentiate non-policy-owners
from police-owners.

After choosing the final candidate algorithm by this known evaluation subset,
I removed predictions that were “known” to be CARAVAN=0 and added pre-
dictions that were “known” to be CARAVAN=1, effectively restoring the perfect
rote learner performance. Sadly, this further reduced my score'!.

5 Description Task

Fig. 1 describes the potential and actual caravan insurance customers. Since
actual and potential customers are indistinguishable without knowledge which
ones have caravan insurance, my model refers to both actual and potential cus-
tomers, expecting to predict about seven times more potential customers than
actual ones. The attributes are named exactly as in TICDATADESCR.TXT.
Only predicted customers are shown as distinct, non-overlapping groups defined
by appropriate attribute values and ranges, all subsets of the data that are not
mentioned are presumed to have CARAVAN=0.

E.g. the first group would be all customers with PPERSAUT <=5 (Contribu-
tion car policies <= 62%), AFIETS<=0 (i.e. no bicycle policies), MGODRK>1
(more than 10% roman catholics in sociodemographic area) and APLEZIER >0
(at least one boat policy). It turns out that 20% of these customers are caravan
policy owners. Unfortunately there are only five people with these properties in
5822 instances of training data. This is signified by '(5/20%)’ behind CARA-
VAN=L1. There are many such small groups in the decision tree which may be

9 In case there was no clear minority class, all identical instances were removed.
10 rote learning
11 Successful prediction models are presumably less noisy than data.



explained because C4.5 tries to fit the target concept CARAVAN=1 too closely.
A more loose fitting may give more insight in the data but less prediction ac-
curacy and cannot be so easily verified. It should be considered if many of the
people with CARAVAN=0 which have been assigned to CARAVAN=1 may be
interested in a caravan insurance due to their similarity to existing caravan own-
ers. The concept potential customer instead of actual customer may thus be
considerably easier to learn.

To gain insight into the target concept I will restrict myself to groups of at
least fifty persons.

The greatest group of this kind is in the lower third of the tree: PPER-
SAUT>5, PBRAND>2, PTRACTOR<=0, MBERBOER<=2, ALEVEN<=0
and PBRAND<=4 (i.e. 2<PBRAND<=4) yields 843 potential customers of
which 16.4% are policy owners which is 2.7 times more than in the original
dataset.

Others groups are PPERSAUT>5, PBRAND>2, PTRACTOR<=0, MBER-
BOER<=2, ALEVEN<=0, PBRAND >4, MOPLHOOG <=2 (52/8%) and PPER-
SAUT>5,PBRAND>2, PTRACTOR<=0, MBERBOER <=2, ALEVEN>0, MBER-
MIDD<=4 (111/14%). It is quite striking how all these large groups appear near
to each other, and sharing at least four conditions (down to MBERBOER<=2).

It makes intuitive sense to presume that high contribution to car policies
(PPERSAUT>5) and fire policies (PBRAND >2) correlates positively to caravan
insurance ownership. That people with a higher contribution to tractor policies
(high PTRACTOR) are less likely to own an insurance is less obvious but still
plausible. In an area with lots of farmers (high MBERBOER) it also seems less
likely to own a caravan insurance - presumably because less people have a caravan
there. The number of life insurances (ALEVEN) seems to have a slightly negative
impact. For a higher contribution to fire policies (PBRAND>4) the percentage
of customers drops significantly, especially for areas with less than 23% of high
level education (MOPLHOOG<=2, 52/8%).

Therefore, a description of a typical policy customer based on this model
would be:

— high contribution to car policies (>62%, PPERSAUT>5) and fire policies
(between 23% and 49%, 2<PBRAND<=4) [half as likely to be owner if
contribution to fire policies is >=50% (PBRAND>4) especially when in
area with high education < 23% (MOPLHOOG<=2)]

— no contribution to tractor policies (0%, PTRACTOR=0)

— lives in an area with at most 23% farmers (MBERBOER <=2)

— has a caravan (obviously, since otherwise s/he would not need insurance..)

These customers tend to care about safety issues (car / fire insurance), as long
as it does not cost them too much. However they care more for their car, where
they can afford more than 62% contribution while for fire insurance they only
want to afford at most 49%. Clearly, once they have a caravan, caravan insurance
will be interesting to them. They live in areas with few farmers where a caravan as
home, and maybe even as the only home, is accepted and where people are more



mobile and less "down-to-earth", less grounded in their surroundings. About one
fifth of training data is of this type.

6 Prediction Task

These are the indices of polished predictions for CARAVAN=1 that were sub-
mitted.
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Fig. 1. Prediction Model (Decision Tree). The discussed subtree is marked with ’!’
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3048 3056 3062 3069 3077 3084 3088 3092 3093 3094 3099 3111 3112 3125 3132
3137 3139 3147 3148 3151 3154 3169 3172 3181 3186 3189 3192 3193 3194 3198
3199 3201 3207 3208 3220 3221 3229 3234 3240 3246 3254 3260 3261 3262 3264
3281 3282 3284 3292 3294 3297 3304 3305 3321 3323 3325 3329 3330 3334 3336
3337 3353 3354 3355 3357 3365 3370 3373 3379 3382 3397 3403 3404 3412 3414
3415 3418 3424 3442 3446 3451 3456 3460 3468 3469 3471 3473 3475 3483 3485
3492 3493 3504 3508 3510 3512 3515 3519 3526 3531 3534 3542 3558 3560 3566
3576 3584 3590 3594 3602 3603 3604 3605 3610 3616 3624 3634 3636 3650 3652
3658 3662 3664 3668 3673 3676 3678 3695 3698 3704 3717 3723 3726 3727 3736
3746 3760 3771 3773 3784 3792 3794 3795 3801 3810 3811 3813 3832 3833 3834
3837 3840 3841 3843 3852 3859 3863 3866 3872 3881 3883 3885 3892 3893 3895
3900 3903 3907 3911 3912 3913 3914 3915 3916 3919 3920 3922 3931 3937 3961
3974 3976 3984 3987 3996 3997 3998.

7 Conclusion

The dataset offered the same view over many different algorithms and sub-
set selections: the more instances correctly classified as caravan policy holders,
the more false positives there are while the ratio between true and false posi-
tives stays almost constant. This may be because the concept ’caravan policy
owner’ also applies to potential customers that do not yet have caravan insur-
ance. A similarity between would-be- and already-customers is to be expected,
so the learning algorithms may approximate the concept (would-be OR already)-
customer.

My experiences with inconsistent instances and the consistent best-case per-
formance of many different approaches during the competition hint that there
may be too much noise in the data to get significantly better results. It may
also be the case that there are not enough attributes to better differentiate non-
policy-owners from policy-owners. Maybe there never will be enough - unless we
can also resolve the issue of “free will” which undoubtedly also plays a role in
choosing caravan insurance. From this viewpoint, finding 121 out of 248 policy
owners is a fairly good result.

Personally, I enjoyed this challenge greatly and learned valuable practical
lessons about data mining. I will certainly be back the next time.
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