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Abstract. In text mining for bioinformatics, one important bottle-neck
is the availability of high-quality tagged corpora. We introduce a novel
approach to learn extraction patterns from pre-classified but untagged
corpora, which are easier to generate automatically. We apply our ap-
proach to two datasets derived from SWISS-PROT plus associated MED-
LINE references. In both experiments a Ripper-like rule learner, JRip, is
competitive to all other learners; outputs a manageable number of un-
derstandable rules; and performs comparably to a human domain expert
investigating the same task. Based on our results, we note weaknesses
and strengths of both human and machine learning approaches, which
indicates that they have distinct areas of expertise. Our approach may
be used to generate initial rulesets for information extraction, to be it-
eratively refined by domain experts; or as a stand-alone approach with
some losses in precision.

1 Introduction

In text mining for bioinformatics, one important bottle-neck is the availability of
high-quality tagged corpora. Creating a pre-tagged corpus entails high workload
for domain experts, but a corpus for a specific domain can usually not be directly
transferred to other domains. Disagreement between domain experts even for
basic issues such as extent of protein and gene names [4] further complicate the
issue.

In this paper, we propose and evaluate an alternative approach to informa-
tion extraction from pre-classified, but untagged corpora; in our case created
automatically from the SWISS-PROT and MEDLINE databases. We reformu-
late the information extraction problem as learning problem where each distinct
class represents a unique slot value to be extracted from the document. Thus,
we are also able to learn synonyms and utilize partial evidence for slot values.
On the other hand we require that the full list of values for a given slot is known
a priori. Also, the scalability of our approach towards very high number of slot
values remains to be investigated.

We will proceed to show that our approach is competitive to state-of-the-art
approaches such as Support Vector Machines and Decision Trees; results in a
manageable number of easily understood extraction rules for each slot value and
even performs competitively to a human domain expert investigating the same



extraction task. The automatic approach and the domain expert each has its own
area of expertise: domain experts are better at creating rules with high precision
at cost of lower recall, while the automatic approach is biased towards creating
rules with lower precision and higher recall. Still, the automatic approach gives
better models than our domain expert in a third of cases; and generally manages
the trade off between precision and recall much better.

2 Databases

SWISS-PROT [5, 1] is one of the largest proteomics databases. All its entries are
created by biologists and are continually updated, extended and corrected. Thus
the quality of the entries is considered to be quite high, which is not yet the
case with automatically generated databases. On the other hand, the number of
available examples is much smaller, but still sufficient for our experiments.

We obtained a recent snapshot of the SWISS-PROT database, consisting
of 121,745 entries. We also obtained all referenced MEDLINE entries, yielding
83,051 documents. For our experiments, we focus on the OS field which encodes
taxonomic information in the form of organism, or species, where the protein is
present. We are interested in predicting domain and species of an organism from
the associated MEDLINE documents.

All in all, there are 7,803 distinct species referenced in our SWISS-PROT
snapshot, on average 1.1+0.3 per entry. It is thus not unlikely that a protein
appears in more than one species; however, since then the learning problem is not
well defined, we removed these entries. We also removed those entries without
MEDLINE references (10.6%), and used only the first referenced MEDLINE
entry! in each of the remaining cases, on the premise that it is the most relevant
document. 104,747 entries remain after these prior selections, each consisting of
a species value and an associated MEDLINE publication. These form the basis
for our experiments.

From each MEDLINE publication, we chose to use title, abstract and MeSH
terms. Throughout this paper, we use word occurrence vector representations.?
We removed all characters except whitespace, lower- and uppercase letters,
numbers, the dash (-) and the prime (’). Each continguous sequence of non-
whitespace characters framed by whitespace® is considered a word. For simplic-
ity, we combined all words from title, abstract and MeSH terms into a single
word vector.

3 Species Domain

As preliminary step, we investigated the task of predicting the species domain,
or kingdom — one of Archaea, Bacteria, Eukaryota or Virus — from MEDLINE

! On average, each SWISS-PROT entry references 1.94+2.0 MEDLINE entries.
% Le. one binary attribute for each word which encodes if it appears in our text or not.
3 _.including begin and end of the text.
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Table 1. Results for predicting species domain. Acc.CV shows two-fold cross-validation
on 5% of data; Acc.Test shows performance of trained model from 5% data on the
remaining 95%. Approximate execution times are also given.

Clagsifier Acc.CV Exec|Acc.Test Exec
ZeroR (baseline)| 49.8% 1.4s| 47.6% 0.2s
OneR 85.3% 1m| 84.2% 0.1s
NaiveBayes-K 93.6% b5m| 93.3% 176s
J48 96.2% 36m| 96.4% 0.33s
PART 96.4% 36m| 96.8% 0.4s
JRip 97.0% 108m| 97.5% 0.1s
Logistic 97.4% 285m| 96.4% Ts
SMO-RBF 97.5% 17Tm| 97.6% 842s
SMO 97.7% 2m| 97.8% 2.6s

documents. We chose to restrict our word occurrence vector representation to the
most-frequent 1044 words, which form our attributes. As we already mentioned,
this is a four-class problem.

Initially, we used 5% of our examples with two-fold cross-validation®*. For val-
idation, all classifiers were retrained on 5% data and evaluated on the remaining
95% for validation. A selection of common classifiers from WEKAS® was chosen:
OneR is a simple classifier which learns one rule based on a single attribute’s
values; NaiveBayes is another well-known classifier based on the Bayes Theo-
rem for conditional probability; J48 is a decision tree learner based on C4.5RS,
PART corresponds to c4.5rules and generates rulesets from all paths within a
C4.5 decision tree; JRip is a rule learner similar in spirit to the commercial rule
learner Ripper; SMO and SMO-RBF are support vector machine implementations
with linear resp. Radial-Basis-Function kernels.

Results can be found in Table 1. We see that more than half of our classi-
fiers perform similarily.® According to runtime, we see that the support vector
implementation SMO is both much faster than JRip and slightly better; however,
for the purposes of communicating our models to domain experts, JRip is much
better suited. For illustration, Figure 2 shows the model which was obtained by
JRip.

4 Species Top Twenty

We then decided to predict the top twenty largest species appearing in SWISS-
PROT, 42.1% of all entries. This gives us 43,761 examples. We chose to restrict

4 This is equivalent to splitting the data into two equally sized halves (retaining class
distributions); using one part for training, the other part for testing; then swapping
the sets, repeating train/test and averaging over the two test-set results.

% The source code of WEKA is available at www.cs.waikato.ac.nz/~ml/weka

5 It deserves mention that the very simple model by OneR, IF document contains word
’Bacterial’ => Bacteria ELSE Eukaryota, already improves significantly over the
baseline.
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Table 2. Results for predicting top twenty species. Acc.CV shows two-fold cross-
validation on the complete dataset. Approximate execution time is also given.

Classifier Acc.CV Exec
ZeroR (baseline)| 19.0% 12s
OneR 26.5% 52m
NaiveBayes-K 76.4% 10h
JRip 88.9% 312h
SMO 89.3% 29h

ourselves to the top 3,834 most frequent words. For this task, we obtained a
domain expert’s model for comparison. The expert utilized multi-word patterns,
or phrases.” To ensure a fair comparison with our approach, we counted the
number of rule matches and chose the rule with maximum number of matches.
Ties were resolved in favor of the more common class according to training data.?

We chose a subset of classifiers from the previous experiment, based on con-
siderations of runtime, accuracy and understandability. Experimental results are
found in Table 2. JRip performs again slightly worse than SMO. Again, we prefer
JRip because of its more understandable and small rule set (172 rules for twenty
classes), even if its training takes an order of magnitude longer.

For a more detailed analysis, we compared each species separately, see Ta-
ble 3. Maximum values are marked bold in this table. We can see at once that
JRip performs better in terms of recall and F-measure?, while the domain ex-
pert’s model usually offers higher precision.

Figure 1 shows the same data in graphical form. In most cases, the domain
expert improves precision at the cost of recall, i.e. the lines point!? to the top left.
Since domain experts have told us that they emphasize precision over recall, these
results are not surprising. However, in seven cases JRip offers better precision
than the human model; and in some cases the domain expert’s model yields very
low recall — once even less than 1%.

JRip also manages the trade off between precision and recall better, which
can be seen by the F-measure being higher in three-fourths of cases. Average
precision, recall and F-measure are also uniformly higher and the standard devi-
ation of these values are uniformly lower than those of the domain expert, which
also confirms this observation.

" Due to the limits of word vector representations information on word sequence is
lost and thus multi-word patterns cannot be learned with our approach, which may
create a significant disadvantage for our model.

& We expect JRip to use similar optimizations.

® The F-measure is a simple combination of recall and precision, i.e. 2 % X2

r+p’
10 The dot at one end of the line shows the performance of our domain expert. We

consider the lines to point towards this dot.
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Fig. 1. Results for predicting top twenty species. X shows recall, Y shows precision.
The dot (.) shows the domain expert’s result, the other end of the line shows JRip’s
result. Each line corresponds to one species.

5 Related Research

[6] introduces a system to generate extraction patterns from untagged, but pre-
classified corpus by exhaustively generating all extraction patterns, which are
then manually selected. Our approach is related in that we extract patterns
based on preclassified documents without a manually tagged corpus. No manual
inspection of extraction patterns are necessary for our approach which makes it
more efficient.

[7] introduces a support vector machine classifier to classify sub-cellular lo-
cation. In their case, the machine learning approach still performs significantly
worse than the best manually created rulesets from [3]. SVM models are also
hard to visualise and understand, while our approach generates understandable
rulesets of manageable size.

[2] also investigate the prediction of sub-cellular location, among other tasks.
While using a pre-tagged corpus at first, they later resort to weakly labeled
training instances, generated from online databases. Their approach is somewhat
similar to ours, in that our training instances are also weakly labeled (i.e. we do
not know where ezactly the required information is present in the text). They
also investigate using relational learning for this task, and find that it improves
precision.
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Table 3. Results for predicting top twenty species. p shows precision, r shows recall,
F shows the F-measure, 2 * :_’I_’; . On the left, we see results by JRip, on the right those
from the domain expert’s model. Best values are shown in bold. Average and standard

deviation for all columns is also given.

Species Name JRip Human

P r F P r F
Homo sapiens (Human) 80.57 81.00 80.79| 50.99 93.18 65.91
Xenopus laevis (African clawed frog) 75.17 83.10 78.94| 84.15 70.14 76.51
Escherichia coli 96.90 96.13 96.51| 81.13 96.45 88.13
Caenorhabditis elegans 87.53 91.09 89.27| 85.37 93.73 89.36
Haemophilus influenzae 99.04 99.83 99.43| 99.94 99.03 99.49
Arabidopsis thaliana (Mouse-ear cress) 97.80 96.66 97.23| 99.85 71.49 83.32
Bos taurus (Bovine) 71.38 83.05 76.77| 94.52 11.64 20.72
Bacillus subtilis 98.82 98.74 98.78| 99.87 96.93 98.38
Archaeoglobus fulgidus 100.00 100.00 100.00|100.00 0.69 1.36
Mus musculus (Mouse) 78.97 79.81 79.39| 90.73 13.26 23.15
Mycobacterium tuberculosis 99.85 99.77 99.81|100.00 99.55 99.77
Salmonella typhimurium 89.65 91.81 90.71| 95.71 91.45 93.53
Synechocystis sp. (strain PCC 6803) 99.13 99.67 99.40(100.00 93.57 96.68
Pseudomonas aeruginosa 97.12 99.02 98.06| 99.87 97.43 98.64
Saccharomyces cerevisiae (Bakers yeast) 95.55 93.73 94.63| 84.52 94.85 89.39
Methanococcus jannaschii 99.87 99.87 99.87| 63.76 99.93 77.85
Gallus gallus (Chicken) 79.85 85.31 82.49| 93.75 44.39 60.25
Rattus norvegicus (Rat) 86.04 72.16 78.49| 80.24 68.90 74.14
Schizosaccharomyces pombe (Fission yeast)| 94.81 95.35 95.08| 98.25 87.99 92.84
Drosophila melanogaster (Fruit fly) 87.55 90.23 88.87| 94.83 70.00 80.55
Max 7 15 16 14 5 4
Avg 90.78 91.82 91.23| 89.87 74.73 75.50
+ stdDev 9.31 8.35 8.62| 13.22 32.03 28.56

6 Conclusion

We have reformulated a problem of information extraction within BioInformatics
as learning problem. More specifically, we have aimed to extract organism names
(domain and species) from MEDLINE documents related to proteomics.

The reported results show that our approach is competitive to a human
domain expert, both having distinct areas of expertise: Humans are better at
creating rules with high precision at cost of lower recall, while our approach
is well suited to create rules with lower precision and higher recall. This is in
accordance with our domain expert’s preference for precision. Still, in a third of
cases our approach yields models with better precision than the domain expert’s
models. The focus on precision over recall may impair the domain expert’s ability
for a reasonable trade off between precision and recall'! while our approach
manages the trade off fairly well.

' Recall as low as 0.7% was observed, for small or even nonexisting improvements in
precision




(archaeon) => domain=A (163.0/0.0)

(Archaeal) and (!Bacterial) => domain=A (92.0/0.0)
(Halobacterium) => domain=A (22.0/3.0)

(archaebacterium) and (Bacterial) => domain=A (7.0/0.0)
(Methanobacterium) => domain=A (6.0/2.0)

(Archaea) and (!Proteins) => domain=A (2.0/0.0)

(Viral) => domain=V (351.0/18.0)

(Bacterial) and (!Animal) => domain=B (1665.0/14.0)

(Bacterial) and (!RNA) and (!cerevisiae) => domain=B (211.0/10.0)
('Animal) and (Escherichia) and (!Proteins) and (!Fungal) and (!cDNA) => domain=B (26.0/2.0)
('Animal) and (bacteria) and (!cDNA) => domain=B (19.0/3.0)
(strain) and (!Fungal) and (!Proteins) and (!2) => domain=B (17.0/1.0)
('Animal) and (cyanobacterium) => domain=B (9.0/1.0)

(Bacteria) and (!Animal) => domain=B (6.0/1.0)

(Frames) and (operon) => domain=B (4.0/1.0)

(Salmonella) => domain=B (2.0/0.0)

(Streptomyces) and (!at) => domain=B (5.0/0.0)

(Anabaena) => domain=B (3.0/0.0)

(bacterium) => domain=B (5.0/1.0)

(Bacillus) and (!Animal) => domain=B (5.0/1.0)

(pneumoniae) => domain=B (2.0/0.0)

=> domain=E (2534.0/20.0)

Fig. 2. JRip’s model for species domain. (word) encodes word occurrence and ('word)
word non-occurrence. E.g. second rule reads like this: If the (title, abstract, MeSH
terms) of a MEDLINE entry contains Archaeal and not Bacterial, predict domain
archaea (domain=A). This rule is corrent for 92 examples and incorrect for none
(92.0/0.0). The last line is the default rule, which is chosen if no other rule matches.

Our approach returns an easily understandable ruleset of manageable size'?

and could either be used for generating initial rulesets for iterative refinement
by domain experts; or as a stand-alone approach with some losses in precision.

We intend to investigate the scalability of our approach to thousands of
slot values in the future. We will also look into relational learning approaches
and support vector machines with string kernels; and other interesting problems
within the field BioInformatics.
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