
Towards a Theoretical Framework for Ensemble Classification

Alexander K. Seewald
Austrian Research Institute for Artificial Intelligence

Freyung 6/VI/7, A-1010 Wien, Austria
alexsee@oefai.at; alex@seewald.at

Abstract

Ensemble learning schemes such as AdaBoost and
Bagging enhance the performance of a single clas-
sifier by combining predictions from multiple clas-
sifiers of the same type. The predictions from an
ensemble of diverse classifiers can be combined
in related ways, e.g. by voting or simply by se-
lecting the best classifier via cross-validation – a
technique widely used in machine learning. How-
ever, since no ensemble scheme is always the best
choice, a deeper insight into the structure of mean-
ingful approaches to combine predictions is needed
to achieve further progress. In this paper we offer
an operational reformulation of common ensemble
learning schemes – Voting, Selection by Crossvali-
dation (X-Val), Grading and Bagging – as a Stacking
scheme with appropriate parameter settings. Thus,
from a theoretical point of view all these schemes
can be reduced to Stacking with an appropriate
combination method. This result is an important
step towards a general theoretical framework for
the field of ensemble learning.

1 Introduction
In this paper, we show that the ensemble learning scheme
Stacking 1 is universal in the sense that other common en-
semble learning schemes systems such as Voting, Selection
by Crossvalidation (X-Val), Grading and even Bagging can
be mapped onto Stacking via distinct meta classifiers. We
present operational definitions of these meta classifiers for
each scheme. In each case, running Stacking with the appro-
priate meta classifier simulates the respective ensemble learn-
ing scheme’s operation perfectly, although – as with every
simulation – the runtime performance may be worse.

For Grading [Seewald and Fürnkranz, 2001] which would
ordinarily not be mappable, we show that an alternative pa-
rameter setting can transform it into a mappable form without
sacrificing its unique performance.

Finally we show that, by additionally modifying the train-
ing set of the base classifiers with a simple wrapper, Bagging

1introduced in [Wolpert, 1992], extended by [Ting and Witten,
1999].

[Breiman, 1996] can also be simulated. Thus Stacking can
be seen as a general theoretical framework for these common
ensemble learning schemes.

2 How does Stacking work?
We shall now explain how Stacking works in order to lay the
foundations for our functional definitions of meta classifiers
later on. Figure 1 shows Stacking on a hypothetical dataset
with three classes, � examples and

�
base classifiers. Fig-

ure 1(a) shows the original dataset. Each example consists of
an attribute vector of fixed length, followed by a class value.

During training, all base classifiers are evaluated via cross-
validation on the original dataset. Basically, a crossvalidation
splits the dataset into � equal-sized folds, then uses �����
folds for training and the remaining fold for testing. This pro-
cess is repeated � times so that each fold is used for testing
exactly once, thus generating one prediction for every exam-
ple2. We follow the extension of [Ting and Witten, 1999]
of using the base classifiers’ class probabilities. Each classi-
fier’s output is therefore a class probability distribution for ev-
ery example. Figure 1(b) shows how such a reasonable class
probability distribution from a single classifier may look. The
rows correspond to the examples from the original training
set, see Figure 1(a).

The concatenated class probability distributions of all base
classifiers in a fixed order, followed by the class value, forms
the meta-level training set for Stacking’s meta classifier, see
Figure 1(c). After training the meta classifier, the base clas-
sifiers are retrained on the complete training data.3 Thus,
Stacking’s meta classifier is free to learn arbitrary complex
models to predict the true class from the class probabilities of
its base classifiers, making it clearly the most flexible ensem-
ble learning scheme.

For testing, the base classifiers are queried for their class
probability distributions. These form a meta-example for the
meta classifier which outputs the final class prediction. Any
meta classifier for Stacking must therefore learn a mapping
from a vector of concatenated class probabilities to a pre-
dicted class value from training data, and later apply this
learned mapping to a new vector.

2 �	��
� throughout this paper
3Interestingly, not retraining the base classifiers usually yields

slightly worse results.

��������� �	��

�������������� ��������������� ��������������� ��������������� �

...
...�������������� �

(a) original training set

� � �
0.90 �
 ��� �
 ���
�

�� 0.70 �

��
�

� 0.80 �

 �
�
 � � �
 � � 0.60

...
...

...
0.80 �

� �

 �

(b) sample class probability distribution�	��� ����!�"#!��� � �	�$�#����!�"#!%��&� �	��� �&��!�"#!%��&'� � � � � � � � � ����� ���(�*) +�� (�*) ,*� (�*) -.� (�) +�� (�) ,*� (�) -/�
. . .

(') +�� (') ,*� (') -/� �(�*) + � (�*) , � (�*) - � (�) + � (�) , � (�) - �
. . .

(') + � (') , � (') - � �(�*) +�� (�*) ,%� (�*) -�� (�) +�� (�) ,%� (�) -��
. . .

(') +�� (') ,%� (') -�� �(�*) +�� (�*) ,%� (�*) -�� (�) +�� (�) ,%� (�) -��
. . .

(') +�� (') ,%� (') -�� �
...

...
...

...(�*) +�� (�*) ,�� (�*) -�� (�) +�� (�) ,%� (�) -��
. . .

(') +�� (') ,%� (') -�� �
(c) training set for Stacking’s meta classifier

Figure 1: Illustration of Stacking on a dataset with three classes (a, b and c), � examples and
�

base classifiers. 021%3 465 refers to
the probability given by classifier 7 for class 8 on example number 9
2.1 Definitions
In this section we shall give some definitions for important
concepts and terms. Without loss of generality let us assume
that a fixed training dataset with � examples and 9 classes,
and a single test instance4, is given.

�
arbitrary base classi-

fiers have already been cross-validated on this dataset, each
yielding a prediction for all � examples, and have afterwards
been retrained on the complete training dataset. We also as-
sume that all base classifiers output class probability distri-
butions, i.e. estimated probabilities for each class instead of
deciding on a single class.

Then, 0 1:465 refers to the probability given by classifier 7
for class 8 on example number 9 during the internal cross-
validation. Let us now denote 0;1�5 to signify the complete
class probability distribution of classifier 7 on instance 9 . If
no 9 is given, 0 1 refers to the class probability distribution
for classifier 7 on the unknown instance during testing. For
completeness we also have to assume a fixed arbitrary order
on the class values so that each class is at the same position in
all 0 1<5 considered, and a fixed arbitrary order on the

�
base

classifiers. =?>%@BA�A�5 denotes the true class for instance 9 from
the training set. CED*D*FHG;I�J 5 corresponds to the attribute vector
of instance k. � is the number of instances. We consider all
indices to be zero-based, e.g. the instance id 9 satisfies the
equation KMLN9OL � ��� .PBQSRUT/VXW

is the well-known delta function (1). In case the no-
tation is not generally known, we also define YHZ6[]\^Y`_ (2) to
signify the first entry where the corresponding value is equal
to the maximum. This allows to determine the predicted class
from a given class probability distribution and also takes care

4Since during testing, no learning takes place – i.e. the learned
model of all classifiers remains constant – instances can be pro-
cessed in arbitrary order. Thus, demonstrating equivalence for a
single test instance is sufficient.

of non-unique maximal values5.PBQSRaT.VXW2bdc � if
RebfVK if
RhgbfV (1)

YHZ6[�\^Y`_1 Q CE1 W2i \Mj�kml�7on`Cp1 b \^Y`_q 1 Q Cp1 W�r (2)

As we mentioned, we assume that all ensemble learning
schemes return class probability distributions. If predictions
are needed, the position of the maximum class probability in
the vector – i.e. the predicted class – is easily obtained via for-
mula (2). Trivially, we can thus also simulate Stacking with
predictions by Stacking with probability distributions; simply
by transforming the class distributions meta-dataset to predic-
tions via (2) prior to applying the meta classifier.

We can now characterize every ensemble learning scheme
by what features it extracts from the meta-dataset during
training and how these features define the mapping from
meta-dataset to final class probability distribution during test-
ing. Thus, each meta classifier which simulates the corre-
sponding ensemble learning scheme can be defined by two
characteristics: One, the features which are extracted from
the meta-dataset and how they are computed. Two, how these
features are used during testing to determine the final class
probability distribution.

3 Mapping Ensemble Learning Schemes
We show that Stacking using class probability distributions is
equivalent to the following ensemble learning schemes, given
appropriate meta classifiers.s Stacking is the stacking algorithm as implemented in

WEKA, which follows [Ting and Witten, 1999]. It con-
structs the meta dataset by adding the entire predicted

5In that case, choosing the more common class is also a reason-
able alternative

class probability distribution instead of only the most
likely class. We show that all other ensemble learning
schemes can be mapped onto this variant of Stacking via
specialized meta classifiers. Trivially, Stacking via pre-
dictions can also be simulated by transforming the class
distributions meta-dataset to predictions prior to apply-
ing the meta classifier via formula (2).s X-Val chooses the best base classifier on each fold by an
internal ten-fold CV. This is also known as Selection by
Crossvalidation, a widely used ensemble technique in
machine learning.s Voting is a straight-forward extension of voting for dis-
tribution classifiers. Instead of giving its entire vote to
the class it considers to be most likely, each classifier is
allowed to split its vote according to the base classifier’s
estimate of the class probability distribution for the ex-
ample. I.e. the mean class distribution of all classifiers is
calculated. It is the only scheme which does not use an
internal crossvalidation. We also show that more com-
mon voting of predictions can be simulated by Stacking.s Grading is the grading algorithm [Seewald and
Fürnkranz, 2001]. Basically, Grading trains one meta
classifier for each base classifier which tries to predict
when its associated base classifier fails. This decision
is based on the original attributes from the dataset. A
weighted voting of the base classifiers prediction gives
the final class prediction. The confidence for a correct
prediction of a base classifier, which is estimated by its
associated meta classifier, is used as weight.s Bagging [Breiman, 1996] is another common ensemble
technique. Here, the same type of classifier is repeat-
edly trained on new datasets, which have been gener-
ated from the original dataset via random sampling with
replacement. Afterwards, the component classifiers are
combined via simple unweighted voting.

We shall proceed to show how every one of them can be simu-
lated by Stacking with an appropriate meta classifier. We give
functional descriptions of the mapping from meta-dataset to
features during training and from features to final prediction
during testing. For Bagging, a simple wrapper is necessary
around each base classifier, which simulates random sam-
pling with replacement.

3.1 Voting
Voting is the simplest case. During training, no features are
extracted from the meta-dataset. In fact Voting does not even
need the internal crossvalidation. Since after training the base
classifiers are retrained on the complete training set, the base
classifiers are then equivalent to those normally used in Vot-
ing.

During testing, Voting determines the final class probability
distribution as follows, i.e. as mean class probability distri-
bution for the current unknown instance.

� F`I�� b �
�

1���� 0 1� (3)

Thus, it can be easily seen that the meta-classifier defined by
just computing the mean probability distribution of the base
classifiers – as above – simulates Voting with probability dis-
tributions.

Voting with predictions can be mapped similarily. In this
case, we use 0
	 1 instead of 0 1 in formula (3). 0
	 1 is the
vector of 0 	1 4 for all 8 , where

0 	1:4 b c � if 8 b YHZ6[]\ YH_ 4 Q 0 1 4 W , for given 7K otherwise (4)

In essence, this simplifies the class probability distribution to
a vector of zeros with just a one where the most probable class
was earlier. Summing over these simplified class probability
distributions is clearly equivalent to counting the number of
votes per class over all classifiers. Again, the class with the
highest number of votes is chosen as final prediction. Con-
cluding, we have shown Stacking to be equivalent to Voting in
either variant, using the proposed meta-classifier.

3.2 X-Val
For X-Val, we first determine the accuracy per classifiers as
estimated by the internal crossvalidation, which can be com-
puted directly from the meta-level dataset, see (6). Then, we
derive as feature the id of the classifier with the maximum ac-
curacy. Thus, the value of ��I`A�D.= corresponds to our learned
model.

��I`A�D.= b YHZ6[�\^Y`_1 Q CEJ&J 1 W (5)

where

CEJ�J 1 b �
�

��

5��� PBQ Y Z/[�\^YH_4 Q 0 1 465 W�T =?>%@BA�A 5 W (6)

During testing, X-Val simply returns the distribution from best
base classifier ��I`A�D.= .

� F`I�� b 0
��������� (7)

3.3 Grading
For Grading, the case is quite difficult. Since Grading’s
meta classifiers6 base their model on the original dataset’s at-
tributes, at first glance it seems to be impossible to map it
onto Stacking as specialized meta-classifier – at least without
utilizing bi-level stacking [Schaffer, 1994].

However, during an evaluation of Grading we noted that
there is very little difference between meta classifiers, al-
ways less than 1%, see Table 1. This was also found by
the original authors, see the technical report [Seewald and
Fürnkranz, 2001]. This puzzled us for some time and eventu-
ally prompted us to run our own experiments using a baseline
learner as meta classifier which always outputs a fixed proba-
bility distribution based only on the most common class. The
idea was to find out how much of the performance gain is due
to the combining scheme and thus independent of the meta-
classifier.

6Note that both Stacking and Grading have the parameter meta-
classifier.

We were surprised to note that this trivial meta classifier,
ZeroR, is competitive to all other meta classifiers we evalu-
ated and even once outperforms them all, see Table 1.7 So it
is a reasonable alternative meta classifier to IBk with ten near-
est neighbors for Grading, which was used in [Seewald and
Fürnkranz, 2001] and we propose it for further experiments.

What does this alternate meta classifier mean for Grading?
Basically, Grading does not grade – it works solely because
reasonable meta classifiers will be as good as the baseline ac-
curacy, while getting better than that seems to be extremely
hard. Based on Grading’s combining scheme, the predic-
tions are weighted by � Q��?W

, so in this setting Grading is es-
sentially equivalent to accuracy-weighted voting of the base
classifiers predictions, where the accuracy is estimated via
cross-validation.8 Thus, while we cannot simulate the orig-
inal Grading with multiple meta-classifiers via Stacking, we
have at least shown that we can simulate a variant similar to
Grading, which is competitive to the original Grading pro-
posal and five other variants with different meta-classifiers –
even once outperforming them all.

Given our proposed new meta classifier, it is now possible
to map Grading onto Stacking. During training, the accura-
cies of base classifiers are extracted using formula (6). The
accuracies of all our base classifiers correspond to our learned
model. During testing, we build the combined class probabil-
ity distribution similar to Voting using predictions but with an
additional weight – namely the accuracy we extracted earlier.

� F�I � b �� �1���� CEJ�J&1
�
�

1 ���
� CpJ�J 1 0 	 1��� (8)

where 0
	 1 is again the vector of 0 	1 4 for all 8 . 0 	1:4 is taken
from formula (4).

A straightforward extension of this which we have not
yet evaluated is accuracy-weighted voting of base classifier’s
class probability distributions, which is given in the following
formula.

� F`I � b �� �1 ��� CEJ&J�1
�
�

1 ���
� CEJ�J 1 0 1��� (9)

Thus, we have shown that Stacking can simulate Grading
without sacrificing its unique performance.

7By average accuracy it is even the best choice – however, a more
realistic view is to consider it competitive to the original choice.

8The meta-datasets for Grading are different for each base clas-
sifier and consist of the original attributes, followed by a binary
attribute which encodes whether the base classifier did (+) or did
not (-) correctly predict the class of the respective instance during
the cross-validation. The class distribution of this meta-dataset is
directly related to the cross-validated accuracy of its base learner,
i.e. �	��
� � �2�6�

and �	����� �
 � �2�6�
– so the better the learner

performs, the more unbiased the class distribution becomes. Un-
der these circumstances it is not unreasonable to expect this to be
a very hard learning task, which can seldom be solved better than
the baseline of always predicting
 . Based on the reasonable as-
sumption that all classifiers have an accuracy of at least 50%, the
most common class will be
 and then Grading will be equivalent to
accuracy-weighted voting.

3.4 Bagging

For Bagging, the same meta-classifier as for Voting with pre-
dictions is used. The number of base classifiers is equal to
the iteration parameter of bagging – each base classifier for
Stacking corresponds to one instantiation of the base learner
for bagging. In order to simulate the random sampling from
the training set, the base learner’s training sets have to be
modified before training, via formula (10).

� I����EF�@#7 ��� I�D b l�� C D*D*FHG I�J 1�� T =?>%@BA�A 1���� n 7 4 b F`@ � � Q K T
� � �

W�T��	� F! ^KML 8 L � � � r (10)

rand(a,b) ... generates uniform random numbers

from the closed interval [a,b]

During training, Formula (10) is used to create – for each base
classifier separately – a training set of the same size as the
original training set via random sampling from the original
training set, exactly as in Bagging. These training sets are
then used to train the base classifiers. This approach can also
be seen as a probabilistic wrapper around each base classifier.
No features are extracted from the meta-level dataset during
training, as for Voting.

During testing, each base classifier gives a prediction.
These predictions are then voted to yield the final prediction,
exactly as for Voting with predictions, i.e. (3) modified via
(4) – for more details refer to subsection 3.1. Concluding, we
have shown the equivalence of Bagging and Stacking.

4 Others

By definition StackingC [Seewald, 2002], can also be mapped
onto Stacking via a special meta classifier. In fact, the avail-
able implementation is a specialized subclass of a common
meta classifier, MLR. Another recent variant, sMM5 [Dze-
roski and Zenko, 2002], is also implemented via a special
meta classifier and thus amenable to the same kind of map-
ping. Therefore, Stacking is also equivalent to both of these
new variants, given appropriate meta classifiers.

However, AdaBoost [Freund and Schapire, 1996] cannot
be simulated by Stacking because of its mainly sequential na-
ture.9

9Or, to be more precise: While its training phase could poten-
tially be simulated, using bi-level Stacking [Schaffer, 1994], replacing
internal cross-validation estimates with training set performance es-
timates and utilizing multi-level vertical stacking – i.e. putting each
classifier on top of the last one: one level for each iteration – and
some elaborate wrappers between adjacent levels, its testing phase
can regrettably not be simulated. AdaBoost computes a weighted vote
of its component classifiers, whereas in Stacking the predictions of the
classifiers are propagated upwards, beginning at the lowest level, and
are thus processed by each component classifier in turn. So, in order
to simulate AdaBoost, we would have to either modify the component
classifiers as well, or change the basic structure of Stacking. We opted
to leave this problem open until a more complete understanding of
combining methods offers a simpler, less opaque and more helpful
approach.

Table 1: Grading with different level 1 classifiers. The first column shows the accuracy of IBk(originally used in [Seewald and

Fuernkranz, 2001]), all other columns show accuracy ratios for the respective meta-learners (Acc � Meta ���
Acc � IBk �). The last column

shows the results for our baseline learner, ZeroR. Average accuracy and standard deviation per column are also shown.

Dataset IB
k

D
ec

is
io

nT
ab

le

J4
8

K
er

ne
lD

en
si

ty

K
S

ta
r

M
LR

N
ai

ve
B

ay
es

Z
er

oR

audiology 84.51 0.9895 0.9895 0.9791 1.0105 0.9895 1.0052 1.0000
autos 81.95 1.0060 1.0060 0.9643 1.0000 0.9643 1.0060 1.0298
balance-scale 89.76 1.0000 0.9982 1.0000 1.0018 1.0000 1.0000 1.0000
breast-cancer 74.48 1.0000 0.9859 1.0047 1.0094 1.0094 1.0000 0.9906
breast-w 96.57 1.0000 1.0015 0.9970 1.0000 0.9985 1.0015 0.9984
colic 84.78 0.9936 1.0032 0.9968 1.0032 0.9840 0.9968 1.0000
credit-a 86.09 0.9916 0.9933 0.9949 0.9966 0.9848 0.9916 0.8816
credit-g 75.90 0.9934 0.9895 1.0000 0.9829 0.9789 0.9881 1.1343
diabetes 76.30 1.0085 1.0051 1.0051 1.0085 1.0034 1.0017 1.0085
glass 73.36 1.0191 1.0000 1.0255 1.0255 1.0382 1.0127 1.0319
heart-c 85.48 0.9730 0.9691 0.9730 0.9807 0.9653 0.9846 0.9884
heart-h 83.33 1.0122 1.0122 0.9755 0.9837 1.0041 1.0041 1.0082
heart-statlog 83.70 0.9956 0.9823 0.9602 0.9735 0.9823 0.9867 0.9956
hepatitis 81.94 1.0079 1.0236 1.0315 1.0157 1.0157 1.0472 1.0315
ionosphere 91.17 1.0063 1.0063 1.0000 1.0000 1.0063 1.0094 1.0093
iris 95.33 1.0000 1.0000 1.0070 1.0000 1.0070 1.0000 1.0000
labor 94.74 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
lymph 84.46 1.0160 1.0240 0.9840 1.0000 1.0240 1.0080 1.0320
primary-tumor 49.26 0.9641 0.9222 0.8922 0.9641 0.9641 1.0000 0.9582
segment 98.10 1.0000 0.9987 0.9969 0.9951 0.9969 0.9965 1.0000
sonar 86.06 0.9721 0.9441 0.9888 0.9777 0.9665 0.9832 0.9720
soybean 94.00 0.9969 1.0000 1.0000 0.9751 0.9984 1.0031 0.9984
vehicle 74.47 1.0254 1.0111 0.9889 0.9810 1.0333 1.0254 1.0191
vote 96.09 0.9976 1.0000 0.9976 0.9976 0.9952 0.9952 1.0000
vowel 98.79 0.9969 1.0010 0.9969 0.9980 0.9939 0.9980 0.9908
zoo 97.03 1.0000 1.0000 1.0102 0.9898 0.9898 1.0102 1.0000
Avg 85.29 0.9987 0.9949 0.9912 0.9950 0.9959 1.0021 1.0030�

10.81 0.0137 0.0217 0.0258 0.0143 0.0196 0.0130 0.0396

5 Experimental Issues

While the given formal definitions of meta classifiers are
mainly intended to enable further theoretical work, a direct
implementation is also feasible. On the assumption that our
models are correct, an implementation could serve to inves-
tigate runtime performance, i.e. the cost penalty for the sim-
ulation. However, since training the meta classifier usually
contributes little to the total runtime – the main cost is due to
the internal cross-validation of all base classifiers – we con-
sider this unnecessary. In most cases, the expected runtime
cost of the simulation is expected to be comparable to that of
the original system. In case of Grading it is even expected
to be slightly less, since our proposed meta classifier is much
faster than the original classifier proposed in [Seewald and
Fürnkranz, 2001]. Only for Voting, which does not need the
internal cross-validation at all, the runtime cost of the simu-

lation is expected to be about one order of magnitude higher.
We believe that the advantage of having a comprehensive de-
scription of all these schemes within a single framework out-
weighs this cost penalty for Voting.

6 Related Research
To our knowledge, there is no related research concerned with
the theoretical equivalence or practical simulation of ensem-
ble learning schemes. The conceptual closeness of most en-
semble learning schemes is of course no surprise; however,
we seem to have been the first to formalize this closeness to-
wards achieving a general theoretical framework.

7 Conclusion
We have shown that Stacking is equivalent to common ensem-
ble learning schemes, namely Selection by Crossvalidation

(X-Val), Voting of either class probability distributions or pre-
dictions, and a competitive variant of Grading. We have given
functional descriptions of suitable meta classifiers for Stack-
ing which simulate the operation of these ensemble learning
schemes. By a simple wrapper we were also able to sim-
ulate Bagging. Recent variants such as StackingC[Seewald,
2002] and sMM5 [Dzeroski and Zenko, 2002] can also be
simulated in the same way. So all these schemes can essen-
tially be reduced to Stacking with an appropriate combining
scheme. Thus we conclude that our approach offers a unique
viewpoint on Stacking which is an important step towards a
theoretical framework for ensemble learning.

One possible venue for future research may be to build tai-
lored meta classifiers for specific problems, using the defini-
tions of common ensemble learning schemes as background
knowledge to guide the search process. Research into al-
ternative meta classifiers for Stacking seems also a reason-
able course, given that two recent variants (StackingC, sMM5)
have been successful in this area using quite simple ap-
proaches.

Acknowledgements
This research is supported by the Austrian Fonds zur Förderung der
Wissenschaftlichen Forschung (FWF) under grant no. P12645-INF.
The Austrian Research Institute for Artificial Intelligence is sup-
ported by the Austrian Federal Ministry of Education, Science and
Culture.

References
[Breiman, 1996] Breiman, L. (1996): Bagging Predictors.

Machine Learning (24), 123–140.

[Dzeroski and Zenko, 2002] Dzeroski S., Zenko B. (2002):
Is Combining Classifiers Better than Selecting the Best
One?, in Proceedings of the 19th International Confer-
ence on Machine Learning, ICML-2002, Morgan Kauf-
mann Publishers, San Francisco, 2002.

[Freund and Schapire, 1996] Freund, Y., Schapire R.E.
(1996): Experiments with a new boosting algorithm,
Proceedings of the International Conference on Machine
Learning, pages 148-156, Morgan Kaufmann, San Fran-
cisco.

[Schaffer, 1994] Schaffer, C. (1994): Cross-validation,
stacking and bi-level stacking: Meta-methods for classi-
fication learning. In P. Cheeseman and R. W. Oldford
(Eds.), Selecting models from data: Artificial Intelligence
and Statistics IV, 51–59. Springer-Verlag.

[Seewald and Fürnkranz, 2001] Seewald A.K., Fürnkranz J.
(2001): An Evaluation of Grading Classifiers, in Hoff-
mann F. et al. (eds.), Advances in Intelligent Data Analy-
sis, 4th International Conference, IDA 2001, Proceedings,
Springer, Berlin/Heidelberg/New York/Tokyo, pp.115-
124, 2001. Also available as Technical Report (earlier ver-
sion) TR-2001-01, Austrian Research Institute for Artifi-
cial Intelligence, Vienna, Austria. www.oefai.at

[Seewald, 2002] Seewald A.K. (2002): How to make Stack-
ing Better and Faster While Also Taking Care of an Un-
known Weakness, in Proceedings of the 19th International

Conference on Machine Learning, ICML-2002, Morgan
Kaufmann Publishers, San Francisco, 2002.

[Ting and Witten, 1999] Ting, K. M., Witten, I. H. (1999):
Issues in stacked generalization. Journal of Artificial Intel-
ligence Research 10 (1999) 271–289.

[Wolpert, 1992] Wolpert, D. H. (1992): Stacked generaliza-
tion. Neural Networks 5(2) (1992) 241–260.

