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Abstract. In this paper we investigate several hypotheses concerning
document relevance ranking for biological literature. More specifically, we
focus on three topics: performance, risk of local searching, and homonymy
recognition. Surprisingly, we find that a quite simple ranker based on
the occurrence of a single word performs best. Adding this word as a
new search term to each query yields results comparable to elaborate
state-of-the-art approaches. The risk of our local searching approach is
found to be negligible. In some cases retrieval from a large repository
even yields worse results than local search on a smaller repository which
only contains documents returned by the current query. The removal of
automatically determined homonyms yields almost indistinguishable re-
sults to the original query, so it is not inconceivable that the problem of
homonymy in biological literature has been overstated. Concluding, our
investigation of three hypotheses has been useful to decide implemen-
tation issues within our research projects as well as opening interesting
venues for further research.

1 Introduction

Genome research has spawned unprecedented volumes of data, but characteri-
zation of DNA and protein sequences has not kept pace with the rate of data
acquisition. To anyone trying to know more about a given sequence, the world-
wide collection of abstract and papers remains the ultimate information source.
The goal of the BioMinT! project is to develop a generic text mining tool that
(1) interprets diverse types of query, (2) retrieves relevant documents from the
biological literature, (3) extracts the required information, and (4) outputs the
result as a database slot filler or as a structured report. The BioMinT tool will
thus operate in two modes. As a curator’s assistant, it will be validated on Swis-
sProt? and PRINTS?; as a researcher’s assistant, its reports will submitted to

! Biological Textmining, EU FP5 QoL project no. QLRI-CT-2002-02770.

% SwissProt is a popular database on protein sequence, function and other features.
See [2].

3 The PRINTS resource is a compendium of protein fingerprints. A fingerprint is a
group of conserved motifs which characterise protein families and may be used to
infer the function of an unknown protein. See [1].



the scrutiny of biologists in academia and industry. The project is conducted by
an interdisciplinary team from biology, computational linguistics, and data/text
mining.

Within this paper, we focus exclusively on the first mode of the BioMinT tool
as the curator’s assistant. More specifically, our evaluation focusses on document
relevance ranking for medical annotation of Homo sapiens within SwissProt.
Document relevance ranking is an important task within our project, so we have
implemented a set of rankers for this task.

Ranking of documents by relevance is a well-researched topic. For example,
the Text Retrieval Conferences are organized by the U.S. National Institute of
Standards & Technology? on a yearly basis and are organized in the form of
competitions, yielding dozens of publications per year. Other papers include [3,
7,10]. A comprehensive overview on the growing field of biological literature text
mining can be found in [5].

In this paper we investigate the performance of diverse ranking systems
within the BioMinT prototype. We consider both query-independent ranking
systems, i.e. those which are trained on a corpus of relevant and irrelevant doc-
uments from the same topic and where the score® of any one document only
depends on its content; and query-dependent ranking systems, i.e. those where
the score is dependent on document contents and query while no training cor-
pus is used. The latter correspond roughly to general search engines such as
Google, Yahoo and the infamous Windows search function while the former cor-
responds to the machine learning approach to ranking: learn a model to predict
relevance from training data and apply it to generate a ranking.® An excellent
result of a quite simple ranker prompted us to combine these two approaches in
a straightforward manner, improving the result further. We intend to address
the combination of these ranking methodologies more comprehensively in the
future.

Furthermore, we will also estimate the risk of our local searching approach.
That is, we aim to answer whether it would be preferable to have the full MED-
LINE” database available directly instead of sending queries to PubMed?®, and
ranking only the retrieved document references — which is our current local
searching approach.?

4 More details and publications see trec.nist.gov

® The ranking is simply the sorted list of documents according to score, i.e. the first
document has the highest score, the second has the second-highest score and so on.

5 This implicitly assumes that a model which predicts relevance sufficiently well is
also a good ranker. This is not always the case — for example, in our experiments we
found that models which perform worse at prediction may perform better at ranking
and vice versa.

" MEDLINE is a large comprehensive repository of around twelve million bibliographic
references, managed by the U.S. National Center for Biotechnology Information
(NCBI). A few thousand references are added daily from a variety of sources.

8 www.pubmed.org, managed by the U.S. National Center for Biotechnology Informa-
tion (NCBI), is a retrieval engine for the MEDLINE database.

9 Tt should be mentioned that local searching as defined here may be a misnomer.



Lastly, we report an investigation on the usefulness of homonymy recognition
and find the recognition to work well but yield no improvement in terms of
ranking performance.

Our experiments are based on the medical annotation dataset by the Swiss
Institute of Bioinformatics which has been the subject of previous papers, e.g.

2 Motivation

A web-based prototype system for the BioMinT project is in development at
our institute. It currently offers the functionality to expand query terms via
synonyms extracted from fourteen online databases (see Section on Synonym
Expansion); to retrieve bibliographic references from MEDLINE via the online
PubMed search engine; and to process these collection to create ranked document
listings via diverse ranking algorithms, four of which have been chosen for our
experiments here.

We were at first interested in investigating the relative performance of our
rankers, and especially in the strengths and weaknesses of query-dependent clas-
sical ranking algorithms (i.e. those who determine relevance by computing simi-
larity with the query) versus query-independent learning rankers (i.e. those who
determine relevance by generalizing from a given collection of relevant and non-
relevant documents, not taking the specific query to be answered into account).

Due to licensing problems it is at present moderately difficult to maintain a
local snapshot of the full MEDLINE database even for research purposes; and al-
most impossible in a commercial setting, at least for non-U.S. companies. So our
current approach is to extend the query with synonym expansion (=oversearch-
ing), send the query to PubMed and afterwards locally postprocess the retrieved
document set with filtering and ranking approaches. We call our approach local
search. The second main point of this work is thus to determine whether this
approach is competitive to having the full MEDLINE database locally indexed,
and if not how high the risk is to us it in the future — in terms of significant
differences in ranking performance.

Lastly, word sense disambiguation in biology remains challenging (see e.g.
[11]). Related to this is the problem of homonymy — a single protein/gene name
may refer to multiple protein/gene entities. While we have insufficient data for
proper word-sense disambiguation, it is still possible to investigate whether re-
moval of homonyms from the query improves the ranking. This is what we inves-
tigated in the third and final experiment. Our current synonym database suggests
a simple way to recognize homonyms which has been preliminarily validated by
domain experts and looks very promising.

These are the three main topics for this work. We will now proceed to explain
the synonym expansion process and describe the medical annotation dataset, fol-
lowed by experimental setup and — finally — our experimental results concerning
these three topics.



3 Synonym Expansion

The synonym expansion is based on a composite database of protein and gene
names and synonyms created from fourteen online databases. Here, we focus on
species Homo sapiens, so only five databases are relevant: SwissProt[2], Genew[9],
OMIM|8], LocusLink!'® and GDB!!.

As general procedure we have extracted all name from appropriate fields of a
given entry and created all pairwise combinations of these synonyms, combined
with species and source information, as separate entries in the synonym tables.
This procedure mainly relies on synonym information being symmetric (i.e. if A
is a synonym of B, then B is a synonym of A) and on the synonyms from a given
entry being concerned with the same gene or protein.

Several databases contain references, or links, to corresponding entries in
other databases. Only links where both endpoints exist, and which refer to the
same species, are processed. This additional information is also integrated into
the database as follows.

We assume that database links are symmetric and transitive. Both should be
instantly obvious from the fact that entries are linked only when they refer to
the very same gene or protein. We have accounted for this fact by considering
all links symmetric and extending the link structure by transitive closure. Thus,
two entries are linked if and only if there is a path of length greater than zero
between them in the link graph.

An alternative view of this process is that we partition the link graph into
distinct subgraphs, each of which is not connected to any other subgraph. The
entries within each subgraph are connected by link paths of arbitrary length. We
have called each subgraph a synonym group, and assigned an unique number to
it. As a special case, single database entries without associated links are also
considered a synonym group and assigned an unique number. We then consider
all entries in each group to be part of a super-entry, consisting of names from
all those entries; and extend the database with these new synonym pairs.

During the creation of the synonym database we noticed quite a few unusual
protein names, which have been brought to the attention of domain experts.
These have recently provided cleaning rules which are applied after each entry
has been processed.

The current release of the synonym database was updated on 7th of June
and contains 501,866 unique names; 11,277,791 unique synonym pairs (including
source database, id and source field data) and 329,257 unique synonym groups
from a total of 7,395 unique species.

10 nttp://www.ncbi.nlm.nih.gov/LocusLink/, a composite database managed by the
U.S. National Center for Biotechnology Information.

www.gdb. org, GDB Human Genome Database (GDB) was developed and maintained
by the The Hospital For Sick Children, Toronto, Ontario, Canada (1998 - 2002), and
Johns Hopkins University, Baltimore Maryland, United States of America (1990-
2002). In January 2003, GDB-related software and public data were transferred to
RTI International. RTI continues to host GDB as an open, public resource.

11



4 Medical annotation dataset

The medical annotation dataset is concerned with the relevance of documents
encountered during annotation of thirty-two genes for SwissProt. It contains
32 queries and 2,188 documents classified as Good (relevant), Bad (irrelevant)
or Unclear (insufficient data to determine relevance). We removed documents
classified as Unclear since the task of determining whether insufficient data for
relevance determination exists is orders of magnitude harder and not as interest-
ing to study as the task of learning models for known relevance. This approach
is equivalent to assuming a missing class value for Unclear. Thus we follow the
TREC!? methodology in that we assume relevance to be a binary value, which
greatly facilitates evaluation and comparison of different approaches. 1,834 doc-
uments remain after removal of class Unclear, of which 20% are assigned to class
Good (relevant). Specific information on the queries is shown in Table 1.

We have arbitrarily chosen nine queries from the medical annotation dataset
for testing, and the others for training. Of the remaining 23 queries, we removed
two because they did not contain any relevant documents; and one because
its query cannot be represented in our current prototype since it contains a
negation!3.

The name of each query is equivalent to a gene name, which in turn refers
to the main search term used for a PubMed query by the annotators. We ex-
panded the main search term via synonym expansion, adding all unique names
from within all synonym groups that contain the search term. We restricted the
search to Homo sapiens. We also added the six search terms (mutation mutations
variant variants polymorphism polymorphisms) to recreate the original queries
as closely as possible.

Since about a year has gone by since the creation of the original medical
annotation dataset, it is not surprising that most queries now return more docu-
ments (V #QDocs>#Docs). Since the relevance of new documents is not known
to us, we have chosen to evaluate mainly those documents whose relevance is
known from the medical annotation database — except for Avg. rel. Rank which
is computed over the current query (see Evaluation Measures).

5 Experimental setup

5.1 Query construction

As we mentioned earlier, each query was constructed from the expanded main
search term, which corresponds to the query name. Synonym expansion is done
by looking up all synonyms in our synonym database for species Homo sapi-
ens. Additionally, the following search terms were added: (mutation mutations

12 TREC is a series of yearly Text REtrieval Conferences organized by the U.S. Na-
tional Institute of Standards and Technology, see trec.nist.gov. The TREC con-
ferences have been centered around specific text mining problems from the beginning
in 1992, always in a competitive setting.

13 1t is quite feasible to extend this, but this feature has not yet been implemented.



Table 1. Medical annotation dataset partitioned into training and test queries.
#QDocs, returned documents for expanded query as of July 2004; #Docs, documents
in original query as of 2003; #RDocs, relevant documents in original query. * denotes
removed queries, see text.

Query #QDocs #Docs #RDocs
Test, for all rankers

wtl 660 128 17
ump synthase 146 13 1
xpa 993 131 1
vhl 590 299 58
wrn 247 137 9
xpc 199 50 2
wfsl 93 17 11
GCDH 77 11

tulpl 24 17 1

Train, for query-independent rankers only

ADRB1* 116 1 0
CDH1 744 32 4
ESR1 3709 80 3
GLB1 3401 4 1
LPL 789 234 65
MRP1 1560 49 3
abebl 949 100 9
mrp2 839 18 4
mrp6 669 14 10
surl 2241 78 14
tgfbr2 11349 11 1
tgm1l 6640 22 11
tpo not thrombopoietin* 403 66 9
triosephosphate isomerase 312 101 16
tsel 867 112 6
umps* 146 6 0
urod 270 10 6
uroporphyrinogen-IIT synthase 41 28 17
vdr 1015 36 9
vmd2 4519 9 6
whn 33 27 1
zap70 8680 7 1
zic3 34 7 1

variant variants polymorphism polymorphisms). Query terms were enclosed in
double quotes (”). Other search terms were similarily treated and concatenated
to the original query via AND. For example, the final query for tulpl was:

("RP14" OR "tubby like protein 1" OR "Tubby related protein 1"

OR "Tubby-like protein 1" OR "Tubby-like protein-1" OR "TUBL1"

OR "TULP1") AND ("mutation" OR "mutations" OR "variant" OR
"variants" OR "polymorphisms" OR "polymorphism")

The final query was then sent to the online PubMed search engine and all docu-
ments were retrieved and processed by the rankers which we shall now describe
in turn.

5.2 Rankers

We chose four rankers for our evaluation — two classic ranking systems which
assign scores to documents based on their similarity to the query (LR and SR),
and two learning systems who try to learn scores for documents based solely
on their content without reference to the query (NBR, ORR). The former are
called query-dependent and the latter query-independent rankers because of this
important distinction. The query-independent rankers utilize documents from all
training queries for learning while this source of information is not used by the



query-dependent rankers. For the query terms, it is vice versa. RND is a special
case which estimates query complexity as the performance of a random ranker.

— LuceneRanker (LR) utilizes the java-based text indexing and retrieval engine
Jakarta Lucene!* for ranking. The high performance of this engine allows us
to index all given query documents on-the-fly and search the index for the
final query. Lucene has also been used as competitive baseline for the TREC
2003 Genomics Track competition.

Lucene uses the following formula to compute the score for each document.
No term boosting was used: V¢ : boost; = 1.

idfy ‘ idfy

= d t boost 1
scoreq = coordgq ; fa normy 1 orma 005t (1)
where
scoregq = score for document d (2)
coord,q = number of terms in both query and document  (3)
divided by number of terms in query
tfy = the square root of the frequency of t in the query(4)
numDocs
id = — +1.0 5
idfy o8 docFreq; + 1 + (5)
numDocs = number of documents in index (6)
docFreq; = number of documents containing t (7
normy = Z (tfyidft)? (8)
t
tfa = the square root of the frequency of t in d 9)
normaz = sqrt number of tokens in d and same field as t (10)
boost; = the user-specified boost for term t (11)

A variant of LR, LuceneIlndexRanker (LIR) will be used for evaluating local
search. The only difference is that LIR uses a one-year snapshot of MEDLINE
as background database and adds the documents from the local query to
this index before searching this larger index. This simulates what the search
would be like if we were to create an index on the full MEDLINE database.

— SimpleRanker (SR) ranks by a simplified score. For each document, it com-
putes the proportion of query terms which actually appear in the document.
This ranker is intended to serve as a simplified baseline to the more refined
score computation by LR, but has the advantage that documents can be
ranked instantly without having to wait until the full document collection
becomes available. The latter is necessary for LR as all documents are needed
to build the full-text index.

14 http://jakarta.apache.org/lucene



— NaiveBayesRanker (NBR) utilizes a pre-trained Naive Bayes classifier for
ranking. Naive Bayes is a common machine learning algorithm based on
Bayes’ Rule, see [4]. Probabilistic classifiers like Naive Bayes have been shown
to tackle the problem of document relevance ranking for biomedical literature
successfully, see [7,10]. Title and abstract of each document are transformed
into a bag-of-words representation prior to processing, where each word is
represented by one attribute encoding binary occurrence. The top 1000 most
frequent words appearing in documents from the training queries plus the
document’s classification as Good or Bad were used for training this classi-
fier. No stemming, lexical preprocessing, or normalization took place. NBR
outputs a numeric score, i.e. the probability of a document being relevant,
estimated from the training data.

— OneRRanker (ORR) also utilizes a pre-trained model like NBR. However,
the model by ORR is much simpler and consists of one rule based on a single
word — the word which yields most information on the class, see [6]. In our
case, the rule obtained from training data was:

IF ’missense’ appears in document THEN score=1.0 (relevant)
ELSE score=0.0 (irrelevant)

Contrary to NBR, this ranker can only output binary scores (either 0 or
1) which means that all documents considered relevant or irrelevant will be
output in input order, i.e. reverse chronological which is usually not well
correlated to any reasonable relevance order'®. This is usually not a good
property for a ranker since this means it cannot hedge its bets — all relevant
documents are considered equal as are all irrelevant documents. Ordering
within the set of relevant/irrelevant documents is given by the document
source, and not by the ranker. Exactly the same training data as for NBR
was used here.

— RandomRanker (RND) is an even simpler baseline than SR. It shuffles the
input documents randomly, corresponding to assigning a random numeric
score to each document — independent of its contents! RND is obviously
not suited for meaningful ranking, but measures the complexity of each test
query — queries with mostly relevant documents will perform quite well with
this approach, while queries with few or only one relevant document will
fare poorly. It should be easy to beat RND, which is indeed the case. The
measures for RND have been averaged over 1000 runs for each query to yield
more stable estimates.

All rankers and supplementary tools are written in Java which facilitated inter-
operability. We also removed nine documents which were present in both training
and test queries since this may lead us to overestimate the performance of the
system'6

15 This is due to the search via PubMed which returns documents in reverse chrono-
logical order (i.e. the newest document is on top)

6 In unpublished experiments, changes from 0.74 to 0.64 in average precision were
observed when removing overlapping documents. There are two viewpoints on this:



5.3 Evaluation

We have chosen three measures for evaluating our rankers. Let us assume that
the ranked documents are numbered as d;,ds,ds, ...d,, in ranked order, where
dy is predicted to be most relevant. Let the index of the ith relevant document
be r; and the total number of relevant documents be R. Let R; be the number
of relevant documents which are returned before or at i, i.e. the size of the set
{r; <= i}. Then Prec(i) = %, Recall(i) = % are precision and recall after
returning the ith document.

— Average precision (Avg.Prec), i.e. the mean of precision at each relevant
document retrieved (defined as in TREC: E:’; Prec(r;)).

— Precision-Recall break even point (PRBE), i.e. the point within the ranking
where precision equals recall (Prec(i) == Recall(i) for any ). If it is not
defined, we chose to take the 4 in the ranking where precision and recall
differ least (=iminnirs), and computed the average of recall and precision

there: Lrecliminpiss )J;Reca”(i'"""mf 1) Contrary to average precision which is
hard to interpret, this is a real recall/precision value which can actually be
achieved by cutoff at i¢minpiry.

— Average relative rank (Avg.rel.Rank) in the current query from July 2004.
Here, the rank of all relevant documents within the larger and more current
query is averaged and normalized to the number of returned documents
(#QDocs in Table 1). This value tells us how the relevant documents are
distributed in the present query and roughly at which place we would expect
a known relevant document to appear on average. Because we do not know
how many of the documents ranked before known relevant documents are
also relevant, this may be of limited use. Here, smaller values indicate better
performance.

For each comparison, all three values are reported. Also, arithmetic average of
Average precision, PRBE and Auvg. rel. Rank over the nine test queries is reported
throughout. We chose not to use standard deviation over Average precision be-
cause it is not usually used in TREC evaluation. Also, the queries are of quite
different complexity (see RND) so a proper normalization procedure would have
to be devised. It is not obvious how to achieve this in a fair manner.

6 Results

6.1 Ranking comparison

The results of the ranking can be found in Tables 2, 3 and 4. Surprisingly, the
simplest query-independent ranker ORR is best both on mean Avg.Prec and on

One, we might assume that some overlap between queries is realistic and do not
bother. Two, we might ensure that training and test set are not overlapping to
prevent such overestimation of performance. We have chosen the second approach
since an overlap of nine documents for nine test queries is quite significant and —
given that three of the queries have only one relevant document — could potentially
bias results dramatically. So we chose to err on the side of caution.



Table 2. Average precision. Avg., mean average precision over all queries.

LR SR NBR ORR RND|LR-M
wtl 0.199 0.164 0.267 0.366 0.165| 0.364
ump s.|1.000 1.000 0.333 1.000 0.245|1.000
xpa |0.500 0.333 0.500 0.019 0.043| 0.250
vhl 0.449 0.407 0.617 0.677 0.209| 0.604
wrn 0.698 0.438 0.462 0.282 0.096/0.699
xpc 0.292 0.171 0.500 0.559 0.106|0.700
wisl 0.874 0.884 0.930 0.873 0.700( 0.907
GCDH| 0.977 1.000 0.878 0.792 0.863| 0.977
tulpl | 0.091 0.111 0.333 1.000 0.211| 0.100
Avg. | 0.564 0.501 0.536 0.619 0.293|0.622

mean PRBE; NBR wins on mean Avg.rel. Rank which is a less reliable indicator
of performance. Generally, query-dependent approaches (LR and SR) perform
satisfactorily given that they did not use any information except the query terms
themselves but there is a slight performance gap.

The excellent result of ORR inspired us to try another experiment, shown in
the last column of the results tables as LR_M. Here, we simply added the single
term ’missense’ (= the word learned by ORR) to the queries and reran LR. This
results in improvements for most queries and makes LR_-M the best ranker both
by mean average precision and mean PRBE.

The results are intriguing in more than one sense. For once, LR-M and ORR
perform comparable to [3] who reported 58.89% precision and 69.28% recall.}”,
even though we did not use stemming, lexical normalization, or biological back-
ground knowledge; only 67% training data instead of the 80% implicit in their
five-fold cross-validation; and although they did not remove overlapping docu-
ments between training and test queries which may have lead to an overestima-
tion of precision.'®

Our results agree well with common wisdom within text mining that ranking
approaches with simple word vector representations are competitive to much
more elaborate approaches.!® What is even more intriguing is that the word
‘missense’ which is so useful in ranking relevant documents is not even mentioned
in [3], although some multi-word phrases containing this word are mentioned.



Table 3. Precision-Recall break even point. Avg., mean of PRBE.

LR SR NBR ORR RND|LR-M
wtl 0.118 0.118 0.294 0.353 (0.135|0.353
ump s.|1.000 1.000 0.667 1.000 0.629|1.000
xpa |0.750 0.667 0.750 0.510 0.521| 0.625
vhl 0.414 0.431 0.586 0.690 0.192| 0.534
wrn  |0.667 0.333 0.444 0.333 0.109| 0.556
xpc 0.375 0.350 0.500 0.500 0.311/0.500
wisl 0.727 0.727 0.818 0.727 0.647| 0.727
GCDH| 0.889 1.000 0.889 0.778 0.814| 0.889
tulpl | 0.545 0.556 0.667 1.000 0.594| 0.550
Avg. | 0.549 0.518 0.562 0.589 0.395/0.637

Table 4. Average relative rank, i.e. average rank of relevant documents in current
query from July 2004 normalized by the number of documents returned. Avg., mean
of Avg. rel.Rank over all queries.

LR SR NBR ORR|LRM
wtl 0.410 0.520 0.283 0.497| 0.288
ump s.| 0.026 0.007 0.027 0.075| 0.026
xpa 0.031 0.018 0.023 0.912| 0.053
vhl 0.319 0.312 0.225 0.234|0.213
wrn  (0.098 0.220 0.126 0.474| 0.113
xpc 0.101 0.186 0.070 0.460{0.054
wisl 0.268 0.316 0.185 (.428| 0.252
GCDH| 0.142 0.091 0.228 0.707| 0.166
tulpl | 0.619 0.375 0.167 0.042| 0.524
Avg. |0.224 0.227 0.148 0.425| 0.188

6.2 Risk of local search

To determine the risk of our local search approach, we compared LuceneRanker
(LR) to LuceneIndexRanker (LIR). The only difference between both rankers is
that while LR creates a local index of all documents within the current query, LIR
adds all documents within the current query to a one year snapshot of MED-
LINE obtained via TREC?® consisting of half a million MEDLINE references
indexed between 1st April 2002 and 2003. We consider this to be a reasonable

17 Compare Table 3 - PRBE gives a value of e.g. precision=recall=58.9% for ORR and
63.7% for LR-M

'8 In unpublished experiments on this very dataset, not removing overlapping docu-
ments led to an overestimation in average precision by 0.1(!)

9 Personal communications, Walter Daelemans.

20 trec.nist.gov This is the snapshot that was used for the TREC2003 Genomics
track and was later made publicly available.



Table 5. Performance comparison between LuceneRanker (LR) and Luceneln-
dexRanker (LIR). Avg.Pr., Average precision; PRBE, Precision-Recall Breakeven
point; Avg. rel. Rank, average rank of relevant documents in current query from July
2004 normalized by the number of documents returned.

Avg.Pr. PRBE |Avg. rel. Rank
LR LIR| LR LIR| LR LIR
wtl 0.199 0.236(0.118 0.176/0.410  0.344
ump s.|1.000 1.000|1.000 1.000{0.026  0.026
Xpa 0.500 0.143(0.750 0.571{0.031  0.139
vhl 0.449 0.463(0.414 0.379(0.319  0.311
wrn  |0.698 0.254(0.667 0.333/0.098  0.228
xpc 0.292 0.333(0.375 0.417/0.101  0.083
wifsl |0.874 0.856(0.727 0.727]0.268  0.284
GCDH|0.977 1.000{0.889 1.000(0.142  0.120
tulpl (0.091 0.083|0.545 0.542(0.619  0.667
Avg. 10.564 0.485/0.609 0.572(0.224  0.245

approximation to using the full MEDLINE database of twelve million entries.
Table 5 shows the results. As can be seen, LIR performs somewhat similar to
LR, and on average performs worse. Clearly, LIR does not perform much better
as may have been expected from the fact that term and document frequencies
are better estimated in the larger index. It seems that small, query-dependent
full-text search may also have its advantages.

Concluding, the risk of our local search approach seems to be marginal. It
seems that having a local MEDLINE installation is not essential.

6.3 Homonymy recognition

Lastly, we investigated whether removal of homonyms from the expanded queries
improves the ranking. Based on the reasonable assumption that each synonym
group concerns a single protein/gene entity, we consider homonyms to be names
which appear in more than one synonym group. Five?! of our nine test queries
had at least one term which was present in more than one group, see Table 6.
We removed these terms from the queries and reran LR plus SR. ORR and NBR
did not show any changes, since exactly the same set of documents was returned
for each query.

Results indicate that the improvement is marginal at best and slightly neg-
ative at worst. Overall the performance is almost indistinguishable. Generally,
3.9% of synonyms for species Homo sapiens within our database are homonyms
according to our approach which roughly agrees with the proportion of search

2! Tnitially we additionally found two homonyms for wfsl, but feedback from domain
experts enabled us to trace the wrong homonym to an erroneous entry in an imported
online database, which has since then been corrected. All entries shown here are
verified homonyms.



Table 6. Predicted synonyms, separated by comma. These were removed from each
query for the homonymy recognition experiments.

Query| Homonyms
vhl HRCA1,RCA1
xpc pl125

wrn  |RECQL2,RECQL3
tulpl RP14

wtl WAGR

Table 7. Left: Average precision. Avg., mean average precision. Right: Precision-Recall
break even point. Avg., average PRBE. LRh, SRh are ranking results where homonyms
were removed from the query.

LR LRh| SR SRh LR LRh| SR SRh
wtl |0.199 0.210(0.164 0.169 wtl |0.118 0.118|0.118 0.118
vhl ]0.449 0.442|0.407 0.416 vhl |0.414 0.414]0.431 0.431
wrn [0.698 0.649|0.438 0.438 wrn [0.667 0.556(0.333 0.333
xpc 0.292 0.292|0.171 0.171 xpc [0.375 0.375(0.350 0.350
tulp1(0.091 0.091|0.111 0.111 tulp1|0.545 0.545|0.556 0.556
Avg. (0.434 0.420(0.363 0.365 Avg. |0.474 0.456/0.419 0.419

terms removed for our test queries. Thus, the practical consequences of the
homonymy problem seem to be negligible in our case.

7 Related Research

[3] report on a refined approach to predict relevance from the same medical
annotation dataset. They use normalisation of gene/protein names, a special
Part-Of-Speech tagger, feature selection and creation of new features based on
Journal names, which was input into a Probablistic Latent Categorizer (PLC).
Their results are comparable to our much less elaborate approach which follows
the basic machine learning approach towards ranking.

[5] gives a good overview of current approaches in literature data mining,
also including some approaches to ranking.

[11] is a very comprehensive approach to named entity recognition of protein
and gene names from biological literature. He also tackles word sense disam-
biguation shortly with good success. Parts of his work have been integrated into
the GeneWays project. A synonym resource somewhat similar to the one used
within BioMinT can be found at http://synonyms.cs.columbia.edu/ and is
based on this work. Contrary to our resource, it also incorporates information
extracted from references and full-text papers, and its synonyms have been ex-
tensively reviewed by domain experts.

[7] introduces a system to discriminate papers concerned with protein-protein
interactions from others papers. They used a Bayesian approach and a log-
likelihood scoring function and report promising results. Results are given in



Table 8. Average rank within recent query. Avg., mean of average relative rank. LRh,
SRh are ranking results where homonyms were removed from the query.

LR LRh| SR SRh
wtl (0.410 0.390(0.520 0.510
vhl ]0.319 0.325(0.312 0.313
wrn |0.098 0.120(0.220 0.224
xpc [0.101 0.116|0.186 0.187
tulp1]0.619 0.619|0.375 0.375
Avg. |0.302 0.310/0.322 0.322

forms of coverage, accuracy and log-likelihood distributions, none of which can
be easily compared to our results.

[10] use boosted Bayesian classifiers and Support Vector Machines to learn
a discrimination model for papers that should be included into a speciality
database. Negative examples were generated by using related documents from
MEDLINE which are not part of the speciality database and thus are assumed to
have been rejected. They report average precision on the top 100 documents of
80% for the best system. However, their task is completely unrelated to medical
annotation and so also cannot be compared.

www.e-biosci.orgis a resource that has grown out of another EU research
project. While not specifically adressing document relevance ranking, its goal is
somewhat similar to BioMinT, namely ”...a next generation scientific information
platform that will interlink genomic and other factual data with the life sciences
research literature.”

8 Conclusion

We investigated the relative performance of our rankers on a dataset dealing with
medical annotation. Surprisingly, a quite simple ranker based on the occurrence
of a single word, ORR, was the most successful of the initially considered rankers.
In an extension of our experiments, adding this single significant word to each
search query yielded an improvement to a query-independent ranker, improv-
ing one the simple ranker and yielding comparable results as a state-of-the-art
approach from [3]. This is insofar intriguing as we did not use lexical prepro-
cessing or biological background knowledge; and that the word we found is not
reported as most significant there, although some multi-word phrases containing
‘missense’ were reported.

We investigated whether processing the document set returned from query-
ing PubMed is competitive to using a significant subset of the full MEDLINE
database locally, in a simplified setting. It turned out that this is indeed the
case — if anything, processing the document set from PubMed seems slightly
preferable.

Lastly, we investigated whether the removal of automatically recognized
homonyms from the query improves the ranking. It turns out this is not the



case, so in the context of ranking for medical annotation the homonymy prob-
lem seems negligible.
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