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Computational Learning Theory (COLT)

Goals:

* Predse mathematical formali sation of the ancept of learning

» Formal analysis of general learnability of (classes of) concepts

o Quantify/predict the number of examples necessary for reli able generalisation

| dentification in the Limit (Gold, 1967)

* A succesdul learning algorithm must corredly identify any target concept (of
a particular type) from a sufficiently large (but finite) number of examples.

Exact identification in polynomial time (Angluin, 1988)

 For what types of target concepts are there learning algorithms that can
corredly lean the concept in pdynomial time, and from a polynomia number
of examples, with and without queriesto ateacher / oracle ?

PAC (Probably Approximately Correct) Learning (Valiant, 1984)

 For what classes of target concepts can there be polynomial-time learning
algorithms that with probability (1-0) find an hypothesis with an error < £ on
new examples? (computational complexity) How many training examples are
needed to achieve thisfor agiven € and 0? (sample compl exity)
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Concept Learning - Basic Notions

Instance Space IS Set of all distinguishable objeds describable in a given
representation language L (e.g., L = conjunctions of n boolean attributes: IS =

{0.1}")
Concept / function: c: IS - {0,1} (intensional) or subset ¢ [ IS (extensional).

Concept Space CS: Set of al concepts possble over IS (i.e., al possible
functionsc: IS - {0,1}) : CS={0,1} 'S We only consider two-class tasks here

Hypothesis Space H: Set of all functionsc: IS -{0,1} that the learning algorithm
can represent; H J CS

Sample S (TD): Set of pairs <x,c(X)>, S I IS (xUIS randomly chosen according
to probability distribution D), ¢(x) [{ 0,1} = dasslabe (y)

Learning Algorithm L: Function L = f: S - H which, for a given sample S,
yields a hypothesis h [J H that approximates the target concept c.

© Alexander K. Seevald
aex@seavald.at / alex.seevald.at



PAC Learning (Valiant, 1984) - Scenario
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Error erry(h,c,1S)=prob. that a randomly (according to D) chosen
example is misclassified by h (i.e. different from true cncept c)
erry(h,cl1S)=error (h)=P{xtl S| h(x)#c(x)}
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PAC Learning

Informally:

* A good learning algorithm should make few errors most of the time (i.e., on
most randomly drawn samples=TD given for a concept)

Formalisation of thisidea: PAC learning

Given by thelearning problem:
| S = instance space, CS= concept spae
D = unknown (but fixed) probability distribution over inst. space IS

Given by user:
 maximal acceptable aror: €
» permitted probability of non-acceptable aror (> €): 0 (i.e., confidence 1-0)

Requirementson thelearning algorithm L.:

» For each randomly chosen sample S of size at least m(g,0) (=sample
complexity) and for each possible concept ¢ [ CS, the probability that the
hypothesish [1 H learned by L has an error > £ should be <.
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PAC Learning (moreformally)

Concept space CS is PAC learnable = There exists an
agorithm L with the following poperties. For every
concept ¢ L CS, eveay distribution D on IS, and Al
0<e<0.5, (<0<0.5, L (given accessto €, 0, and the orade
EX(c,D)) outputs a hypahesis concept h LI CS satisfying
error(h)< € with probability of at least (1- 0).

Efficiently PAC learnable < L runsin time paynomial to
both 1/e and 1/0. Implies that m(g,0) is paynomia in bah
1/ and 1/0 — processng an example takes at |east one step.

Sufficient sample complexity m(g,0): m=|§ (no. d cdlsto
oracle) depends on acceptable error € and 1-confidence 0.
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Example: A Rectangle Learning Game

>

Concept space CS; is set of all axis-parallel rectangles in
(2. Given R 0 CS;, = target.

Oracle EX(c,D) returns a randam point and its classficaion
<X,Cc(x)> according to some unknownn fixed distribution D.

m(g,0) calls to the oracle define our training sample S/ TD of
sufficient sizeto learn any target concept ¢/ R.
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Example: A Rectangle L earning Game (2)

, _
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Proposed L: Return R' = tighest-fit redangle which covers
all positive examples.

Error of R' (= prob. d x faling into R-R' aacording 10)
must be < € for a sufficient number m of training exampl es.

Proof: Asaume strip defined by T with weight = €/4 under D.
T includes T iIf and ony if no pant in T appears in the
sample S. The probability of asingle draw from D missng T
IS (1- €/4), so the prob. that all m draws missT is (1- €/4)™
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Example: A Rectangle L earning Game (3)

B Zie

___________________ et

Proof (ctd.): The probability that any o the four strips of
R-R'h asweght /4 (equiv. to error(R' ) ) isthus at most
4(1- /4™, If we dhoacse 4(1- €/4)™ <9, then with prob. (1-0)
the aror of our hypahesisR' Is snaller thag (error(R' ) <).

m=>(4/¢€)In(4/0) satisfies PAC criteriac CS; is PAC learnable.
O(m) sufficesfor R' :CS; isalso efficiently PAC learnable.
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Vapnik-Chervonenkis Dimension

An alternative way to estimate the complexity of a
hypothesis space H (other than simply |H]) is the VC
Dimension. Most useful for infinite hypothesis spaces.

Def. The Vapnik-Chervonenkis dimension, VCDim(H), of a
hypahesis aceH defined over instance space IS is the
size of the largest finite subset of IS shattered by H. If
arbitrary large finite subsets of IS can be shattered by H,
then VCDImM(H) = oo,

Def. A set of instances S is shattered by a hypahesis ace
H if and only if for every dichotomy of S (=every concept
defined owver S) there ists at least one hypahesis in H
consistent with the dichotomy.

Subset S [J 1S has 219 dichotomies/concepts, but not all of
them are always representable as hypothesis h [/ H.
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VC Dimension - Examples

H = {Interval on [} VCDIm(H)=2

H = {Axis-parallel rectangles on %} *
VCDIim(H)=4 | +

H ={Linear halfspacein (18} VCDim(H)=e+1

[1 VCDIM(Lin.R/Weaher)=VCDIim(SMO,linear/Wedaher)=8
VCDIM(Lin.RIUSP9=257
VCDIim(Log R/Weather) = (c-1)p+1 =64
VCDIim(LogR/IUSFS) = (c-1)p+1=2305 L _ *,

4+ —
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VC Dimension - Examples (2)

VC Dimension for other classifiers
VCDIM(SMO,p. =5/USPS) = P 1 Era= 2 = 20
=9,525,431,553).

VCDIM(SMO,RBF/*) = o (resp. |19))
VCDIM(IBK,k=1/*) = oo (resp. |9))
VCDIm(C4.5*)=VCDImM(RIPFER/*) = oo (resp. |9])

(if no pre/post pruning takes place)
VCDIM(NB/*) = ?(paossibly O(cp))

VC Dim is a worst-case estimate. As we see, most of our
lear ner s have infinite VC dimensionality and still work.
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Sufficient Sample Size

Sufficient Sample Sizefor finite and infinite hypothesis
spaces (Blumer et al., 198789)

Finite H: m=(In(1/d)+In|H|)/e (D
Finite H with target concept ¢ [IH, err(h)<e+min(err(h)):
m=(In(1/3)+InH|)/(2€2) (2)

InffiniteH:  m>(4log,(2/0)+8VCDim(H)log,(13€))/e (3)

Gives the number of training examples sufficient to
learn any target concept in the wor st-case.
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Necessary Sample Size

L ower bound on sufficient sample size
(Ehrenfeucht et al., 1989

Consider concept space CSsuch that VCDIm(CS)=2, any
learner L, and any O< € <1/8, 0< 0 <1/100. Then there
existsdistribution D and concept ¢ 0 CSsuch that if
m<max[log(1/0)/e;(VCDIm(CS)-1)/32¢] (4)

then with probability of at least 9, L outputsa hypothesis
having error(h)>¢.

Gives minimum number of examplesto PAC-learn any
concept from CS. Below this m no learner can PAC-
learn every target concept (although learners will
usually be ableto learn most target concepts)
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Example Bounds

€=0.1, 0=0.01. IS=Weather (nominal). || §]=3* 3* 2* 2=36.

Necessary (4): m=20 (independent of VSDIM(H))

VCDim = o (C4.5,1Bk k=1 etc..), i.e. H=CS
Sufficient (1): m=295.58(>|19))

VCDIim < oo (Lin.R, SMO padyl/linea etc..), i.e. HUCS
Sufficient (3): m=4800.00(Lin.R, SMO; >|19)|)

OneR: [H|=23+23+22+22=24
Sufficient (2): m=389.16(>|19))

e Worst-case bounds: Valid for hardest concepts c LICS;
much mor e benign in the aver age case.

o All except formula (2) assumetarget concept ¢ [IH.
e Only considerstwo-class problems
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Theory vs. Practice

COLT / PAC learning

Applied M achine Learning

How many training examples do |
need? (sufficient sample size)

Examples are usually given (few..)
and not easlly extended

Want to be aleto guarantee abitrary
small €

"Natural" concepts are often not
PAC-leanable due to fundamental
reasons (e.g. missng attributes, noise)

Minimal error may not be necessary

Want to be aleto guarantee abitrary
small o

Estimate € and 0 on separate test data
or via aoss-validation

Any target concept must be found.
Focus on hardest concept in CS

Average-case analysis. focus on gven
target concept which may be simpler

Worst-case assumptions concerning
target concept

Assumption: Most "natural™ concepts
arerelatively simple, given
appropriate dtributes/ features
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Contributionsof COLT to Applied ML

Boosting
e Equivaence of strong leaners (PAC) and weak |learners

(PAC for fixed value of € and 0) shown via Boosting-like
procedure in [Schapire, 199092].

Active Learning (leaners chocse spedfic examples and
expect true classinstead of assuming agiven training set)

o Extending PAC with membership oraclesis one of the first
approadies to thisfield, e.g. [Angluin, 1987.

Support Vector Machines

 Basic Kerne Theory and aher important theorems are due
to [Mercer, 1909 and [Aronszgn, 194Q. Structural risk
minimization dweto Vapnik (related to VCDIim and SVMs)
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