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Overview

Revisiting State-of-the-art Learning Systems
• Linear Methods
• Non-Linear Methods from Statistics
• Non-Linear Methods from ML
• Simple & Fast Methods

Real-Life Example: US Postal Office ZIP Codes
Apply all our learning systems and investigate....
• How to Assess Model Performance? Accuracy and Error
• Approaches to Error Estimation
• Efficient use of sample data: Cross-validation
• Determine significant differences between learners:

Fallacies and Pitfalls



© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

3

Linear Methods

All li near methods have high bias and low
variance. The decision surface which splits the
data into positive and negative example is
always a hyperplane (in 2D: a line)

Linear Regression

• Minimizes mean squared error

• Very fast, but susceptible to outliers

Logistic Regression

• Regularization: Estimate class probabiliti es
via logistic function, and ensure they sum to 1.
Maximizes log-likelihood of model given
training data, i.e. P(f|TD)

• Quite fast; less susceptible to outliers
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Linear Methods (2)

Support Vector Machine with linear kernel

• Regularization by defining a well-posed
optimization problem: finding the maximum
margin hyperplane (i.e. maximizing the margin
under constraints on misclassifications)

• Fast; least susceptible to outliers

• Similar to logistic regression for two-class tasks.

Support Vector Machine with nonlinear kernel

• A linear model in high-dimensional (feature)
space defined by a nonlinear kernel. Decision
boundary will usually be non-linear in the
original feature space.

• Quite fast for polynomial and RBF kernel; slow
for complex kernels (e.g. String/Graph kernel)
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Non-linear Methods from Statistics

The following non-linear models are low bias and
high variance. The decision boundary looks
differently in each case and is usually non-linear.

NaïveBayes
• Estimates class probabiliti es directly from TD.

Assumes each attribute contributes
independently to the final class probabliti es.

• Very fast. Less suitable for quantitative attributes

Instance-based learning (nearest neighbor)
• Classify by similarity with training examples.
• Universal approximator: Can learn any concept

to abitrary precision given suff icient data
• But suff icient data size grows exponentially with

the number of input dimensions (curse-of-dim.)
• Fast training, slow testing (~O(N2))
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Non-linear Methods from ML

Decision Trees (C4.5)
• Divide-And-Conquer: Recursive partitioning

of training data by attribute values. Creates
decision tree with class values at the leaves.

• Only allows axis-parallel splits
• Fast & easy to understand (if tree is small )

Rule Learning (RIPPER)
• Separate-And-Conquer: Successively

partition training data by rules = sets of
conditions over attribute values.

• Yields compact and modular descriptions =
rule sets. Decision boundaries for each rule
are still axis-parallel.

• Slower, but even easier to understand since
rules can be analyzed separately.
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Simple & Fast Methods

These methods are very fast even for large
datasets, and have very high bias & very
low variance.

ZeroR (gives Baseline Error/Accuracy)
• Predicts most common class from TD,

or arithmetic mean for regression tasks
• Measures complexity of  learning

problem based on class distributions.

OneR
• Outputs the best rule based on values of

a single attribute.
• Measures complexity of learning

problem based on class distributions and
the distributions of values from the most
predictive attribute.

• Less useful for quantitative attributes.
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An Overview of Learning Systems

oo+–+oPredictive Power

+o–o–+Interpretabilit y

++–o––Robstness concerning
irrelevant inputs

o+–o/+o/++Scalabil ity

++––––Insensitive to
monotone transform.

+++oo–/oRobustness to outliers

++++––Handling of MVs

++–o––Natural handling of
"mixed" data

Rule
Learn.

Dec.
Trees

Inst.
Based

Naïve
Bayes

SVMLin. &
Log.R

Character istic
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A Real-Life Example

US Postal Office Digit Dataset
• Optical Character Recognition for ZIP

Codes in the 90ies as a learning task
• Scanned >10,000 digits from more

than 500 different people.
• Digits were segmented, resized and

resampled to 16x16 pixels with
numeric gray values. Each pixel is
represented by its own attribute.

• Ten classes: { 0,1,2..,9}
⇒ A real-li fe complex learning task with

p=256 quantitative attributes, N=7291
training example, |C|=10 classes.

We will apply all our learning
methods to this task and see how
well they perform. But first...
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How to Assess Model Performance?

Contingency table / confusion matrix

Describes performance of learning system on a dataset with C classes.

CxC Matrix E={ eij} . Entry eij  = number of examples of class i for which the
learning system predicts class j. Obviously,  ΣΣ eij = |TD| = N.

Most widespread measure for Model Assessment:

Accuracy = Σdiag(E)/N  (% of    correct predictions)

Error       = 1-Accuracy  (% of incorrect predictions)

   0   1   2   3   4   5   6   7   8   9
 355   0   2   0   0   0   0   1   0   1|  0
   0 255   0   0   6   0   2   1   0   0|  1
   6   1 183   2   1   0   0   2   3   0|  2
   3   0   2 154   0   5   0   0   0   2|  3
   0   3   1   0 182   1   2   2   1   8|  4
   2   1   2   4   0 145   2   0   3   1|  5
   0   0   1   0   2   3 164   0   0   0|  6
   0   1   1   1   4   0   0 139   0   1|  7
   5   0   1   6   1   1   0   1 148   3|  8
   0   0   1   0   2   0   0   4   1 169|  9

True class

Predicted class

Example: N=2007,
     C=10 classes (0-9)
Σdiag(E) = 1894
⇒ Accuracy 94.4%
⇒ Error   5.6%
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Resubstitution Estimate

Training Set Error: Error of model on training data.

ZeroR (Baseline) 83.62%
OneR 64.33%

Naïve Bayes 23.03%
Linear Regression   7.60%

RIPPER (Rule Learning)  4.66%
C4.5 (Decision Tree L.)   1.98%

SVM w/ linear kernel   0.15%  (d=1, c=0, λ=1)

SVM w/ poly. kernel   0.01%  (d=5, c=0, λ=10)
Logistic Regression   0.00%

IB1 (Instance-Based L.)   0.00%

Training
Data

        test

Model
train
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Analytical Error Estimation

Training Set Error is usually too optimistic, and can be
misleading for some learning systems (e.g. IB1: always
100%). It estimates how well the data can be
approximated by a given model, but does not yield a good
estimate of true error = error on previously unseen data.
For some learning methods a useful error estimate can be
derived analytically just from the training set:

However, for most learning methods this does not work well.
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Hold-out Set Estimate

Test Set Error: Error of model on independent test data
         (i.e. not used for training)

ZeroR (Baseline) 82.11%
OneR 68.56%

Naïve Bayes 28.70%
RIPPER (Rule Learning) 16.64%

C4.5 (Decision Tree L.) 15.00%
Linear Regression 13.05%

Logistic Regression 10.91%

SVM w/ linear kernel   7.08%
IB1 (Instance-Based L.)   5.63%

SVM w/ poly. kernel   4.29%

Training
Data

Model

train
test

Test
Data
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Hold-out Set Estimate (2)

Repeated hold-out testing
• Compute Hold-out Set Estimate several times with

differently shuffled training data which is randomly split
into new training and test sets. Determine average and
standard deviation of obtained errors/accuracies to estimate
expected performance and its variance.

Variant: 0.632 Bootstrap
• Sample from training data with replacement to get training

set of size N. Use remaining data for testing.
• Error = 0.632Errtest+0.368Errresubst. Estimate does not

work well for models that have overfitted the training data.
(Errresubst.<< Errtest )
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Observations

Test Set Error is far more accurate than Training Set Error,
but needs to hold out a significant part of data from the
training set (~25-50%) as an independent test set. This is
unsatisfactory: the additional data could be used to build a
better model.

Repeated hold-out testing computes better expected errors,
and also estimates the expected error variance. However, all
of the test data is still lost for training.

Crossvalidation solves this problem and makes it possible
to use almost all data for training, while still computing a
useful error estimate - at additional computational cost.
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Test

Crossvalidation Estimate

Crossvalidation: Split training data into k equal-sized folds;
use one fold for testing and all others for training.

       (k=10 below)
ZeroR 83.62%
OneR 69.41%
Naïve Bayes 25.87%
RIPPER 12.49%
C4.5 11.69%
Linear Reg. 9.29%
Logistic Reg. 8.50%
SVM linear 4.06%
IB1 2.96%
SVM poly. 1.73%

Train TestTrain Train Train

Train TestTrain Train Train

Train Test TrainTrain Train

Train TestTrain TrainTrain

TrainTrain Train Train

Model
train test

R
epeated k x ( k=

5)
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Crossvalidation Estimate (2)

Observations

• As with Repeated Hold-out testing, Crossvalidation is computationally costly:
The learning system is trained k times with (k-1)/k and tested on 1/k of the full
data.

• However, less data is lost. E.g. for k=10, 90% of data is used for training, and
only 10% is needed for testing. Still , each part of the data is used for testing
exactly once, while the training sets heavily overlap.

• Most common accuracy/error estimation within ML & DM (k=5 or 10)

Variants of CV

• Stratified CV: Ensure the same class distributions in each fold as in the full
training data. Introduces some bias into the sampling, but reduces variance.

• Leave-one-out CV: Crossvalidation with k = N = number of examples, so that
each fold contains only a single example. This is almost unbiased, but may
have high variance. By definition leave-one-out cannot be stratified, so there is
no easy way to reduce the variance. Computationally very costly. For some
classifiers, leave-one-out can be computed much faster (e.g. SVM, IB & LinR)
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Determining Significant Differences

To compare two learning systems, a statistical significance test is needed.
Each test has the following properties:
• Power (probabil ity to find a significant difference that is really there)
• Type I (alpha) error (prob. to find a significant difference when there is none)
• Type II (beta) error (1-Power; prob. to overlook a real significant difference)

General testing procedure
• The null hypothesis is that the two algorithms perform similarly (i.e. no

significant difference). Running the experiments, computing the test statistic
and determining the p-value gives us the probabilit y that the null hypothesis is
right – given that the test's assumptions are correct.

• If p-value < significance level (e.g. 5%), then we reject the null hypothesis and
assume that there is a significant difference between the two algorithms.

To compare many learning systems: Analysis of Variance (ANOVA).
Repeated significance tests are best avoided, because of alpha error:
significance level of 5% means that to compare our 10 algorithms against
each other (45 comparisons) we expect 2-3 spurious significant differences.



© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

19

Significance Tests

For a single k fold CV (Algorithm A vs. Algorithm B)
• X2 Test after McNemar: Compute (pseudo) confusion matrix with the

correctness of A's prediction as rows and B's prediction
as columns. A+, B+: correct prediction. A-,B-: incorrect
prediction. Degrees-of-freedom (df) = 1.

• Paired (Student) t-Test: Compute differences Diff=ErrA-ErrB for each fold
separately. The average of the values should be large relative to the standard
deviation to reject null hypothesis. Significant values of t depend on degrees-
of-freedom (df) and chosen significance level.

df may be overestimated by ~ 50% since training folds are not independent.
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Significance Tests (2)

For multiple k fold CV
• Most common approach: 10x 10-fold CV (each learning system gets the same

train/test folds) and paired t-Test. I.e. a Paired t-Test with ErrA and ErrB
computed over all ten folds from each single CV. k=10=number of runs, df=9
df may be overestimated since runs are not independent ⇒ higher alpha error

• Previously proposed [Dietterich, 1998]: 5x 2-fold CV as an alternative to 10x
10fold CV. Procedure is same as above, i.e. averaged error over folds, but uses
a two-fold CV plus five reptitions. This has low alpha error, but also high beta
error, which translates to low power.

• Using all 100 error estimates from 10x 10fold CV. I.e. a Paired t-Test with
ErrA and ErrB from each fold treated separately as independent estimate.
k=100, so theroretically this would mean df=99, but since there is so much
redundancy, df=10 has been proposed for binary data based on experiments
with synthetic data [Bouckaert, 2003]. Has slightly higher replicability
(repeating the experiments yields more similar results on average), but
estimation of effective df for non-binary data is still undergoing investigation.


