
© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

1

Computational Learning Theory

Univ.-Lektor Dr.techn. Alexander K. Seewald
Österreichisches Forschungsinstitut

für Artificial Intelligence

x

y

+ +
+

+

+

+

–

–

–
–

–

–

–

T'

R'

T

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

2

Computational Learning Theory (COLT)

Goals:
• Precise mathematical formalisation of the concept of learning
• Formal analysis of general learnabilit y of (classes of) concepts
• Quantify/predict the number of examples necessary for reliable generalisation

Identification in the Limit (Gold, 1967)
• A successful learning algorithm must correctly identify any target concept (of

a particular type) from a suff iciently large (but finite) number of examples.
Exact identification in polynomial time (Angluin, 1988)
• For what types of target concepts are there learning algorithms that can

correctly learn the concept in polynomial time, and from a polynomial number
of examples, with and without queries to a teacher / oracle ?

PAC (Probably Approximately Correct) Learning (Valiant, 1984)
• For what classes of target concepts can there be polynomial-time learning

algorithms that with probability (1-δ) find an hypothesis with an error < ε on
new examples? (computational complexity) How many training examples are
needed to achieve this for a given ε and δ? (sample complexity)

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

3

Concept Learning - Basic Notions

Instance Space IS: Set of all distinguishable objects describable in a given
representation language L (e.g., L = conjunctions of n boolean attributes: IS =
{ 0,1} n)

Concept / function: c: IS →{ 0,1} (intensional) or subset c ⊆ IS (extensional).

Concept Space CS: Set of all concepts possible over IS (i.e., all possible
functions c: IS →{ 0,1}) : CS = { 0,1} |IS| We only consider two-class tasks here

Hypothesis Space H: Set of all functions c: IS →{ 0,1} that the learning algorithm
can represent; H ⊆ CS

Sample S (TD): Set of pairs <x,c(x)>, S ⊆ IS (x∈IS randomly chosen according
to probabilit y distribution D), c(x) ∈{ 0,1} = class label (y)

Learning Algorithm L: Function L = f: S → H which, for a given sample S,
yields a hypothesis h ∈ H that approximates the target concept c.

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

4

PAC Learning (Valiant, 1984) - Scenario

Learning algorithm L (with hypothesis space H)

Instance Space IS
with prob. dist. D

(real world)

Training Sample S

drawing and labelling (according to D, c)

hypothesis h ∈ H

Error errD(h,c,IS)=prob. that a randomly (according to D) chosen
example is misclassified by h (i.e. different from true concept c)

errD(h,c,IS)=error(h)=P{x∈∈IS | h(x)≠≠c(x)}

+–+
+ +

+

+

+

––
–

–

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

5

PAC Learning

Informally:
• A good learning algorithm should make few errors most of the time (i.e., on

most randomly drawn samples = TD given for a concept)
Formalisation of this idea: PAC learning

Given by the learning problem:
IS = instance space, CS= concept space
D = unknown (but fixed) probability distribution over inst. space IS

Given by user:
• maximal acceptable error: ε
• permitted probability of non-acceptable error (> ε): δ (i.e., confidence 1-δ)

Requirements on the learning algorithm L:
• For each randomly chosen sample S of size at least m(ε,δ) (=sample

complexity) and for each possible concept c ∈ CS, the probabilit y that the
hypothesis h ∈ H learned by L has an error > ε should be < δ.

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

6

PAC Learning (more formally)

Concept space CS is PAC learnable ⇔ There exists an
algorithm L with the following properties: For every
concept c ∈ CS, every distribution D on IS, and all
0<ε<0.5, 0<δ<0.5, L (given access to ε, δ, and the oracle
EX(c,D)) outputs a hypothesis concept h ∈ CS satisfying
error(h)≤ ε with probability of at least (1- δ).

Efficiently PAC learnable ⇔ L runs in time polynomial to
both 1/ε and 1/δ. Implies that m(ε,δ) is polynomial in both
1/ε and 1/δ – processing an example takes at least one step.

Sufficient sample complexity m(ε,δ): m=|S| (no. of calls to
oracle) depends on acceptable error ε and 1-confidence δ.

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

7

Example: A Rectangle Learning Game

Concept space CSR is set of all axis-parallel rectangles in
ℜℜ2. Given R ∈∈ CSR = target.

Oracle EX(c,D) returns a random point and its classification
<x,c(x)> according to some unknown fixed distribution D.

m(ε,δ) calls to the oracle define our training sample S / TD of
sufficient size to learn any target concept c / R.

x

y

+ +
+

+

+

+

–

–

–
–

–

–

–

R

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

8

Example: A Rectangle Learning Game (2)

Proposed L: Return R' = tighest-fit rectangle which covers
all positive examples.
Error of R' (= prob. of x falling into R-R' according to D)
must be < ε for a sufficient number m of training examples.
Proof: Assume strip defined by T with weight = ε/4 under D.
T' includes T if and only if no point in T appears in the
sample S. The probabili ty of a single draw from D missing T
is (1- ε/4), so the prob. that all m draws miss T is (1- ε/4)m

x

y

+ +
+

+

+

+

–

–

–
–

–

–

–

T'

R'

T

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

9

Example: A Rectangle Learning Game (3)

Proof (ctd.): The probabili ty that any of the four strips of
R-R' h as weight > ε/4 (equiv. to error(R') > ε) is thus at most
4(1- ε/4)m. If we choose 4(1- ε/4)m <δ, then with prob. (1-δ)
the error of our hypothesis R' is smaller than ε (error(R') < ε).

m≥(4/ε)ln(4/δ) satisfies PAC criteria: CSR is PAC learnable.
O(m) suff ices for R' : CSR is also efficiently PAC learnable.

x

y

+ +
+

+

+

+

–

–

–
–

–

–

–

T'

R'

T

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

10

Vapnik-Chervonenkis Dimension

An alternative way to estimate the complexity of a
hypothesis space H (other than simply |H|) is the VC
Dimension. Most useful for infinite hypothesis spaces.

Def. The Vapnik-Chervonenkis dimension, VCDim(H), of a
hypothesis space H defined over instance space IS is the
size of the largest finite subset of IS shattered by H. If
arbitrary large finite subsets of IS can be shattered by H,
then VCDim(H) = ∞.

Def. A set of instances S is shattered by a hypothesis space
H if and only if for every dichotomy of S (=every concept
defined over S) there exists at least one hypothesis in H
consistent with the dichotomy.
Subset S ⊆ IS has 2|S| dichotomies/concepts, but not all of
them are always representable as hypothesis h ∈ H.

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

11

VC Dimension - Examples

H = {Interval on ℜℜ} VCDim(H)=2

H = {Axis-parallel rectangles on ℜℜ2}
VCDim(H)=4

H = {Linear halfspace in ℜℜe} VCDim(H)=e+1
⇒VCDim(Lin.R/Weather)=VCDim(SMO,linear/Weather)=8

VCDim(Lin.R/USPS)=257
VCDim(Log.R/Weather) = (c-1)p+1 = 64
VCDim(Log.R/USPS) = (c-1)p+1 = 2305

+

–

+

+

+

+

+

+

+–

–

–

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

12

VC Dimension - Examples (2)

VC Dimension for other classifiers
VCDim(SMO,p.,d=5/USPS) =

 = 9,525,431,553 (!).

VCDim(SMO,RBF/*) = ∞ (resp. |IS|)
VCDim(IBk,k=1/*) = ∞ (resp. |IS|)
VCDim(C4.5/*)=VCDim(RIPPER/*) = ∞ (resp. |IS|)
 (if no pre/post pruning takes place)
VCDim(NB/*) = ? (possibly O(cp))

VC Dim is a worst-case estimate. As we see, most of our
learners have infinite VC dimensionality and still work.

1
!255!5

!260
1

5

15256
1

1
+=+




 −+
=+




 −+
d

dp

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

13

Sufficient Sample Size

Sufficient Sample Size for finite and infinite hypothesis
spaces (Blumer et al., 1987/89)

Finite H: m≥(ln(1/δ)+ln|H|)/ε (1)
Finite H with target concept c ∉∉H, err(h)≤ε≤ε+min(err(h)):

m≥(ln(1/δ)+ln|H|)/(2ε2) (2)

In/finite H: m≥(4log2(2/δ)+8VCDim(H)log2(13/ε))/ε (3)

Gives the number of training examples sufficient to
learn any target concept in the worst-case.

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

14

Necessary Sample Size

Lower bound on sufficient sample size
(Ehrenfeucht et al., 1989)

Consider concept space CS such that VCDim(CS)≥≥2, any
learner L, and any 0< εε <1/8, 0< δδ <1/100. Then there
exists distribution D and concept c ∈∈ CS such that if
m≤max[log(1/δ)/ε;(VCDim(CS)-1)/32ε] (4)

then with probability of at least δδ, L outputs a hypothesis
having errorD(h)>εε.

Gives minimum number of examples to PAC-learn any
concept from CS. Below this m no learner can PAC-
learn every target concept (although learners will
usually be able to learn most target concepts)

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

15

Example Bounds

εε=0.1, δδ=0.01. IS=Weather (nominal). |IS|=3*3*2*2=36.
Necessary (4): m≥20 (independent of VSDim(H))

VCDim = ∞∞ (C4.5, IBk k=1 etc..), i.e. H=CS
Sufficient (1): m≥295.58 (>|IS|)

VCDim < ∞∞ (Lin.R, SMO poly/linear etc..), i.e. H⊂CS
Sufficient (3): m≥4800.00 (Lin.R, SMO; >|IS|)

OneR: |H|=23+23+22+22=24
Sufficient (2): m≥389.16 (>|IS|)

• Worst-case bounds: Valid for hardest concepts c ∈∈CS;
much more benign in the average case.

• All except formula (2) assume target concept c ∈∈H.
• Only considers two-class problems

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

16

Theory vs. Practice

Assumption: Most "natural" concepts
are relatively simple, given
appropriate attributes / features

Worst-case assumptions concerning
target concept

Average-case analysis: focus on given
target concept which may be simpler

Any target concept must be found.
Focus on hardest concept in CS

Estimate ε and δ on separate test data
or via cross-validation

Want to be able to guarantee arbitrary
small δ

"Natural" concepts are often not
PAC-learnable due to fundamental
reasons (e.g. missing attributes, noise)

Minimal error may not be necessary

Want to be able to guarantee arbitrary
small ε

Examples are usually given (few..)
and not easily extended

How many training examples do I
need? (suff icient sample size)

Applied Machine LearningCOLT / PAC learning

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

17

Contributions of COLT to Applied ML

Boosting
• Equivalence of strong learners (PAC) and weak learners

(PAC for fixed value of ε and δ) shown via Boosting-like
procedure in [Schapire, 1990/92].

Active Learning (learners choose specific examples and
expect true class instead of assuming a given training set)

• Extending PAC with membership oracles is one of the first
approaches to this field, e.g. [Angluin, 1987].

Support Vector Machines
• Basic Kernel Theory and other important theorems are due

to [Mercer, 1909] and [Aronszajn, 1940]. Structural risk
minimization due to Vapnik (related to VCDim and SVMs)

