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What is Learning?

"Learning denotes changes in a system that are adaptive
in the sense that they enable the system to do the same
task or tasks drawn from the same population more

efficiently next time." (Herbert Simon, 1983)

"Learning is constructing or modifying representations of
what is being experienced." (Ryszard Michalski, 1986)

"Learning means behaving better as a result of
experience." (Stuart Russel & Peter Norvig, 1995)

"Learning is making useful changes in our minds."
(Marvin Minsky, 1985)
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Logical Inference

Deduction (logically justified)

Abduction (logically not justified)

(e.g. p = "It rains", q = "The street is wet")

("q is true")        qDeductive conclusion

("p is true")pknown/observed

("whenever p is true, q is also true")p ⇒ qknown: general rule

("p is true")pAbductive conclusion

("q is true")        qknown/observed

("whenever p is true, q is also true")p ⇒ qknown: general rule
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Logical Inference (contd.)

Induction / Inductive Generalization (logically not justified)

• Infers general rules/laws from a finite set of specific observations
• Is not logically justified, unless all possible situations were observed
• Likelihood of correct generalization increases w/ number of confirming cases,

but a single counter-example(!) can falsify any inductive generalization.
⇒⇒ Inductive generalization is dangerous, but the only way of producing new

knowledge from examples. All non-trivial forms of learning use Induction.

("p, q, s and t occurred together")p,q,s,tobservations

("p, q, s, u and v occurred together")p,q,s,u,v

("whenever p is true, q is also true")

("whenever q is true, p is also true")

p ⇒ q

q ⇒ p

Inductive conclusion

or

....

("p, q and r occurred together")p,q,rSets of
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What makes a learning task?

Given the values of an input vector x we want a good prediction of output value y:
f(x) ≈ y

Regression task: y quantitative (interval/ratio scale) - real numbers
Prediction  task: y qualitative (categorical/ordinal scale) - set of distinct values

How to determine function/model f ?
• Estimate from given set of examples xi with known output values yi :

Training data TD={ (xi , yi ), i=1..N} . TD ⊂ Instance space
Instance space = (possibly infinite) set of all distinct examples.

• Each learning algorithm works differently, but all of them estimate function f
from the training data TD via inductive generalization.

• Structure of f differs between learning algorithms. Need some characterization
Concept space = (possibly infinite) set of all distinct functions f

⇒ Language Bias: restrict the set of all concepts (e.g. linear models)
• Learning algorithms do usually not consider all of Concept space
⇒ Search Bias: prefer certain functions f over others (e.g. decision tree learning)

Bias is essential for generalization.
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A simple learning task

yesfalsenormalcoolsunny

notruehighmildrainy

notruenormalcoolrainy

yesfalsehighhotovercast

Play
golf?

WindyHumidityTemperatureOutlook

Weather dataset - When to play golf?

Instance space: 3*3*2*2 =  36 possible instances, of which four are shown with
their classification. Since any of these could potentially be either yes or no classified...
Concept space contains 236 = 68,719,476,736 possible concepts even for this example

Instance space for numerical variables is theoretically infinite. However, computers
have only limited numerical precision (232 and 264 for IEEE single and double prec.)
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Types of Variables

Categorical Scale (qualitative, discrete, nominal)
• e.g. { Success, Failure} , { ORF1, SAT1, RTL, ...}
• Finite, small number of values; arbitrary ordering of values

Ordinal scale (ordered categorical ~ qualitative)
• e.g. { low, medium, high} , { slow, moderate, fast}
• Ordering is apparent (low<medium<high), but distances are meaningless.

E.g. the distance between low and medium and between medium and high is
not necessarily the same.

Interval/Ratio scale (quantitative, numeric, continuous)
• e.g. temperature in °C/°F/K, wind speed in km/h
• Interval: Distances between values are meaningful.

Today it is 2 °C colder than yesterday.
• Ratio: Ratios are also meaningful. Zero point has to be known!

In Florida, the wind blows twice as fast as here.
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An (almost) bias-free learner

Rote Learning
• Store all examples/instances from training data
• When predicting, return f(x) = { yi | (x , yi ) ∈ TD}
• Logically justified (deduction): exactly those examples which have already

been observed are "learned" by RL, and will be returned in the future.
• No Generalization is performed at all ! For previously unseen x, no prediction

is returned ("don't know")
⇒⇒ A learner which does not restrict concept space either explicitly (language

bias) or implicitly (search bias) has not rational basis to classify any
unseen examples.

Definitions
"Bias refers to any criterion for choosing one generalization over another

other than strict consistency with the observed training instances"
(Mitchell, 1980)

Variance: Instabilit y of f itting the model to training data. High bias implies low
variance (since fewer parameters need to be fitted) and vice versa, so there is a
trade-off between bias and variance.
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A low-bias learner: Nearest neighbor

Nearest-neighbor methods (instance-based, lazy l.)
• Store all examples/instances (xi , yi ) from TD
• When predicting, return f(x) = 1/k ∑ yi over all xi

∈ Nk(x). Nk(x) is the neighborhood of x defined by
the k closest points to x in training data TD.
Closeness is measured by an appropriate distance
measure, e.g. Euclidean distance. Some kind of
normalization is essential for numeric variables.

• Parameter k determines smoothness of f it (upper
figure: k=1, lower: k=15) & trades bias and
variance explicitl y. Effective number of
parameters is N/k (one mean is fitted in each
neigborhood) May fit data too closely (overfitting)

Bias: f(x) is well approximated by a locally constant
function. This is a weak assumption.

Variance: Small fluctuations in training data lead to
potentially large fluctuations in f(x), because every
example contributes to the exact decision
boundary. Variance is high for low k.
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A low-bias learner: Nearest neighbor (2)

Nearest-neighbor methods (cont.)

Nearest-neighbor methods are universal approximators

• Can approximate any model to arbitrary precision given enough training data
and suff iciently high k (more precisely: N,k → ∞ such that k/N → 0)

• But suffer from curse of dimensionality:

With higher input dimensions, the size of a k-neighborhood increases
exponentially. E.g. for uniformly distributed inputs in ten dimensions, to
capture 1% of the data for a neighborhood, we must cover 63% of the range of
each input variable. This is no longer a local model, and may suffer from more
errors due to higher bias. If we reduce k accordingly, we may have too few
examples in each neighborhood to approximate the concept well , which
increases the errors due to variance. In both cases the errors increase.

For k=N, nearest neighbor is equivalent to a simple baseline classifier, ZeroR,
which predicts the average y over the whole training data. For classification
ZeroR predicts the most common class and for regression the arithmetic mean
over all yi. This classifier is widely used as a simple benchmark.



© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

11

Example: Weather dataset

Classify new example xn (overcast, 18°F, 53%, false), k=1:

x4

x3

x2

x1

TD =

yesfalse55%14°Fsunny

73.8±16.5219.5±8.27Avg/StD

notrue85%20°Frainy

notrue65%13°Frainy

yesfalse90%31°Fovercast

Play?WindyHumidityTemperatureOutlook
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A high-bias learner: Perceptron

Perceptron (linear binary threshold unit, linear model)
• Computes a linear function of x (assume adding an x0=1 to x, so that constant

term w0 can be handled). f(x) = sign(xT.w). w is initialized randomly.
• Perceptron training rule: w ← w+η(y-f(x)).xT, where y is the true output value

from training data (±1), and η is the learning rate.
• Intuitively, concept boundary is a hyperplane which separates classes +1 & -1.

Update rule is applied to each training example in turn, repeating until all
training examples are classified correctly. Provided η is small enough, and the
training set is linearly separable, this algorithm converges in a finite number of
steps. If data is not linearly separable, convergence is not assured.
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A high-bias learner: Perceptron (2)
Perceptron (cont.)
• Number of parameters: p+1 (one for each input

dimension plus one constant)
Bias: f(x) is well approximated by a linear function.
Variance: small fluctuations in training data have

li ttle to no effect. Variance is usually quite low.

Linear methods assume a simple structure of
f(x). If this assumption is correct, very little
training data is suff icient to model f(x) well . If
not, this will contribute to a high error in
estimating the output y (see upper fig.) =
underfitting. When squared error is used, w can
be determined analytically (=linear regression).

Linear discriminant analysis, logistic regression
and support vector machines (see lower fig.) are
refinements of linear models.
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Linear Regression

Estimate w from training data analytically (not equivalent to Perceptron)

• Choose to minize residual squared error (RSS) yields:

RSS(w) = ∑(yi-xi
T.w)2 = (y -Xw)T(y-Xw) where X is an N x p matrix with

each row an input vector xi and y is an N-vector of the outputs from TD.

Since we seek the minimum, differentiating the above yields:

XT(y-Xw)=0 ⇔ w = (XTX) -1XTy, which can be solved analytically to directly
estimate w without an iterative method. This is called linear regression.

Example: logical AND (i.e. x1∧∧x2 )

Note: For simplicity, we have not used the constant term x0 and weight w0 here.
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Bias and Variance

Trade-off between Bias and Variance
Low bias: high model complexity, can potentially approximate any f(x) well .

However, overfitting can occur - model adapts too closely to training sample
and does not generalize well beyond training data, i.e. on test sample.

High bias: low model complexity, can estimate parameters reliably from li ttle data
However, underfitting can occur - model cannot appropriately fit training
sample and does not generalize well beyond training data, i.e. on test sample.
Prediction error can be decomposed into irreducible model error (due to
imperfect data), variance (due to model fluctuations), and squared bias (due to
the fit between model class and data) = Bias-Variance Decomposition


