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What isLearning?

" Learning denotes changesin a system that are adaptive
In the sensethat they enable the system to do the same
task or tasks drawn from the same population more
efficiently next time." (Herbert Simon, 1983

" Learning is constructing or modifying r epresentations of
what is being experienced." (Ryszard Michalski, 1986

" Learning means behaving better asaresult of
experience." (Stuart Russal & Peter Norvig, 1995

" Learning is making useful changesin our minds."
(Marvin Minsky, 1985
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L ogical Inference

Deduction (logically justified)

known: general rule pl q ("whenever pistrue, g isalso true")
known/observed P ("pistrue")
Deductive anclusion q ("qistrue")

Abduction (logically not justified)

known: general rule pl g ("whenever pistrue, qisalso true")
known/observed q ("qistrue")
Abductive conclusion P ("pistrue’)

(eg.p="ltrans', g="The street iswet")
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L ogical I nference (contd.)

Induction / Inductive Generalization (logically not justified)

Sets of p,q.r ("p, g and r occurred together")
observations p,g,St ("p, g, sand t occurred together")
pasuv  ("p, g, s uandv occurred together")

Inductive mnclusion pl g ("whenever pistrue, g isalso true")
or g p ("whenever gistrue, pisalso true")

» Infersgenera rules/laws from afinite set of specific observations
* Isnot logically justified, unless all possble situations were observed

» Likelihood of corred generalization increases w/ number of confirming cases,
but a single counter-example(!) can falsify any inductive generalization.

[0 Inductive generalization is dangerous, but the only way of producing new
knowledge from examples. All non-trivial forms of learning use Induction.
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What makes a lear ning task?

Given the values of an input vector X we want a good prediction of output valuey:
f(x)=y

Regression task: y quantitative (interval/ratio scale) - red numbers

Prediction task: vy qualitative (caegorical/ordinal scale) - set of distinct values

How to deter mine function/model f ?

« Estimate from given set of examples x; with known autput valuesy; :
Training data TD={(X;, Y, ), I=1..N}. TD L Instance space
Instance space = (possbly infinite) set of al distinct examples.

o Ead leaning algorithm works differently, but all of them estimate function f
from the training data TD via inductive generalization.

» Structure of f diff ers between learning algorithms. Need some dharacterization
Concept space = (possbly infinite) set of al distinct functions f
[] Language Bias. restrict the set of all concepts (e.g. linear models)
« Leaning algorithms do usually not consider all of Concept space
[J Search Bias: prefer certain functions f over others (e.g. dedsion tree learning)
Biasis essential for generalization.
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A simplelear ning task

Weather dataset - When to play golf?

Outlook | Temperature Humidity Windy Play
golf?
overcast | hot high fase yes
rainy cool normal true no
rainy mild high true no
sunny cool normal fase yes

| nstance space: 3*3*2*2 = 36 posgble instances, of which four are shown with
their clasgficaion. Since any of these could potentialy be ather yes or no classified...
Concept space contains 236= 68,719,476,736 possible mncepts even for this example

| nstance space for numerical variables istheoretically infinite. However, computers
have only limited numerical precision (232 and 264 for IEEE single and double prec)
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Typesof Variables

Categorical Scale (qualitative, discrete, nominal)
 eg.{Success Failure}, {ORF1, SAT1, RTL, ..}
* Finite, small number of values; arbitrary ordering of values

Ordinal scale (ordered categorical ~ qualitative)
 eg.{low, medium, high}, { dow, moderate, fast}
* Ordering is apparent (low<medium<high), but distances are meaningless

E.g. the distance between low and medium and between medium and high is
not necessarily the same.

| nterval/Ratio scale (Quantitative, numeric, continuous)

o eg.temperaturein °C/°F/K, wind speed in km/h

» Interval: Distances between values are meaningful.
Today it is 2 °C colder than yesterday.

* Ratio: Ratiosare dso meaningful. Zero point has to be known!
In Florida, the wind blows twice as fast as here.
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An (almost) bias-free lear ner

Rote Learning
o Store dl examples/instances from training data
* When predicting, return f(x) = {y, | (X,y;) U TD}

 Logicdly justified (deduction): exactly those examples which have aready
been doserved are "learned" by RL, and will be returned in the future.

* No Generdlization is performed at al! For previousy unseen X, no prediction
Is returned ("don't know")

[0 A learner which does not restrict concept space either explicitly (language
bias) or implicitly (search bias) has not rational basis to classify any
unseen examples.

Definitions
"Bias refersto any criterion for choosing one generalization over another
other than strict consistency with the observed training instances’
(Mitchell, 1980)

Variance: Instability of fitting the model to training data. High bias implies low
variance (since fewer parameters need to be fitted) and vice versa, so thereis a
trade-off between hias and variance.
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A low-biaslearner: Nearest neighbor

Near est-neighbor methods (instance-based, lazy |.)

Store dl examples/instances (X;,y;) from TD

When predicting, return f(x) = 1/k > y, over al X
[ N (X). N (X) isthe neighborhood of x defined by
the k closest points to X in training data TD.
Closenessis measured by an appropriate distance
measure, e.g. Euclidean distance Some kind o
normalization is essential for numeric variables.

Parameter k determines snoothness of fit (upper
figure: k=1, lower: k=15) & trades bias and
variance  eplicitly.  Effective  number  of
parameters is N/k (one mean is fitted in eah
neigborhood) May fit datatoo closaly (overfitting)

Bias: f(x) is well approximated by a locdly constant

function. Thisis awedk assumption.

Variance: Small fluctuations in training data leal to

potentially large fluctuations in f(x), because every
example contributes to the eact deasion
boundary. Variance is high for low k.
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A low-biaslearner: Nearest neighbor (2)

Near est-neighbor methods (cont.)
Nearest-neighbor methods are universal approximators

« Can approximate aay model to arbitrary precison gven enough training data
and sufficiently high k (more precisely: N,k — oo such that k/N - 0)

e But suffer from curse of dimensionality:

With higher input dimensions, the size of a k-neighborhood increases
exponentially. E.g. for uniformly distributed inputs in ten dimensions, to
capture 1% of the data for a neighborhood, we must cover 63% of the range of
each input variable. Thisis no longer alocal model, and may suffer from more
errors due to higher bias. If we reduce k aacordingly, we may have too few
examples in eadh neighborhood to approximate the wncept well, which
increases the arors due to variance In both cases the arorsincrease.

For k=N, nearest neighbor is equivalent to a ssmple baseline classfier, ZeroR,
which predicts the average y over the whole training data. For classfication
ZeroR predicts the most common class and for regresson the arithmetic mean
over al y,. This classifier iswidely used as a simple benchmark.
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Example: Weather dataset

TD = | Outlook | Temperature Humidity Windy Play?

Xy overcast | 31°F 90% false yes

X, rainy 13°F 65% true no

X3 rainy 20°F 85% true no

X, sunny 14°F 55% false yes
Avg/StD  19.5+8.27 73.8£16.52

Classfy new example X, (overcast, 18°F, 53%, false), k=1:
[y, —x)? if iisanumericattribute

D(X,Y) :\/Z d(x,y) where d(x,Yy,) = ED if x; =y, andiisqualitative
' £l if x, %y, andiisqualitative

Nearest neighbor x, [J predict yes: D(x,,x,) = \/12 + 4‘18§ + E@g +0° =1.12
Normali zation to zero mean and unit
variance (i.e. subtract mean and dvide by standard deviation)

0827 0 01652 [
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A high-biaslearner: Perceptron

=0 '!
-1 otherwise

i’ "O
.f—ow'.x" { Lif X w: x;>0
- o:

Per ceptron (linear binary threshold wnit, linear model)

e Computes alinear function o X (assume ading an X,=1 to X, so that constant
term w,, can be handled). f(x) = sign(x".w). w isinitialized randomly.

e Perceptrontraining rule: w — w+n(y-f(x)).xT, wherey isthe true output value
from training data (+1), and ) isthe leaning rate.

e Intuitively, concept boundary is a hyperplane which separates classes +1 & -1.
Update rule is applied to each training example in turn, repeating until all
training examples are classfied correctly. Provided n is small enough, and the

training set is linearly separable, this algorithm converges in a finite number of
steps. If datais not linearly separable, convergence is not asaured.
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A high-biaslearner: Perceptron (2)

Per Ceptr on (Cont ) Lin=ar Regression of 04 Response

 Number of parameters. p+1 (one for each input
dimension plus one cnstant)

Bias: f(x) iswell approximated by alinear function.

Variance: small fluctuations in training data have
little to no effect. Varianceis usually quite low.

Linear methods assume a simple structure of
f(x). If this assuumption is corred, very little
training data is sufficient to model f(x) well. If
not, this will contribute to a high error in
estimating the output y (see upper fig.) =
underfitting. When squared error is used, w can
be determined analytically (=linear regression).

Linear discriminant analysis, logistic regression
and support vedor machines (see lower fig.) are
refinements of linear models.
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Linear Regression

Estimate w from training data analytically (not equivalent to Perceptron)

» Choose to minize residua squared error (RSS) yields:
RSSw) = > (y;-X,T.W)? = (y -Xw)T(y-Xw) where X is an N x p matrix with
each row an input vedor X; and y is an N-vector of the outputs from TD.
Since we seek the minimum, diff erentiating the éove yields:

XT(y-Xw)=0 = w = (XTX) -1XTy, which can be solved analytically to directly
estimate w without an iterative method. Thisis called linear regression.

Example: logical AND (i.e. x,[,)

P °5 BH
S f 0 SEHTRSEEREE S
10
2a+c=1

ob+d=0 2 _a Mx +1ix >05:1
- _g o PEeEs - (XIX)TEEY S He WE(XIX) Xy =H - f e
a+2c=0 303 X+3%=05:0

b+2d =1
Note: For simplicity, we have not used the mnstant term X, and weight w, here.
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Bias and Variance
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Trade-off between Biasand Variance
Low bias: high model complexity, can potentially approximate any f(x) well.

However, overfitting can occur - model adapts too closely to training sample
and does not generalizewell beyond training data, i.e. on test sample.

High bias: low model complexity, can estimate parametersreliably from little data

However, underfitting can occur - model cannot appropriately fit training
sample and does not generalize well beyond training data, i.e. on test sample.

Prediction error can be decomposed into irreducible model error (due to
imperfect data), variance (due to model fluctuations), and squared bias (due to
the fit between modd class and data) = Bias-Variance Decomposition
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