
© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

1

Decision Tree Learning et al.

Univ.-Lektor Dr.techn. Alexander K. Seewald
Österreichisches Forschungsinstitut

für Artificial Intelligence

Outlook?

Humidity? Windy?

sunny rainyovercast

yes

yes no yes no

≤75 >75 false true

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

2

Prelude: 1R, A Simple Rule Learner

ZeroR (0R) predicts most common class, i.e. the best prediction that can be
obtained without referring to any attribute at all . Equivalent to nearest-
neighbor with k=N.

OneR (1R) predicts best rule based on a single attribute, i.e. the best prediction
that can be obtained using just one attribute.

[Holte 1993, Machine Learning Journal (11)]

How does 1R work?
• Generate one rule for each attribute. Choose the rule which maximizes

proportion of correct prediction on training data TD (aka Accuracy).
• For quali tative variables, choose intervals of maximum length so that in each

interval a majority class for more than SMALL values exists.
• For quantitative variable j, predict (for each value k separately) the most

common class among all examples for this attribute and value.
• Treat missing values as one additional value for each attribute.

• High bias, low variance. Works surprisingly well on some real-life datasets.

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

3

Pseudocode for 1R (taken from Holte,1993)
1. In t he t rain i ng s et c ount t he nu mber of e xampl es in cla ss C hav i ng val ue V for

at t ribu t e A: sto r e th i s in f ormat ion i n a 3D ar r ay, COUNT[C,V, A].
2. The d efaul t c lass i s t he one havin g t he mos t e xampl es in t he trai ning se t . The

ac curac y of th e defaul t cl ass is t he numb er o f trai ning e xampl es in t he
def ault clas s di v ided by t he to t al n umber of t r ain i ng e xampl es.

3. FOR EACH NUMERICAL ATTRI BUTE, A, cr eate a nomi nal versi on of A by de f inin g a
fi nite num ber of i nter vals of valu es. Thes e i nterv als be come t he "v alues " of
th e n omin al vers i on of A. F or exam ple, if A ’ s n umeri cal v alues are par t itio ned
in t o thre e i nter vals, t he nomi nal ver s ion of A w i ll h ave t hree val ues
"i nterv al 1", "in t erva l 2" , and "int erval 3" . COUNT[C, V,A] r efle c ts t his
tr ansfo r mati on: C OUNT[C,"in t erva l I",A] i s t he sum of COUNT[C,V, A] f or all V
in inte r val I . D efini t ions :

• Cl ass C is o ptim al fo r att r ibut e A, value V, i f it maxi mizes COUN T[C,V , A].
• Cl ass C is optim al f or attri bute A, i nte r val I, i f i t maximi zes

COUNT[C, "int erva l I", A].
Val ues are p arti t ione d int o int erval s so t hat ever y int erval sati s fies the

fo l lowi ng co nstr aints :
(a) t here is a t l east on e c lass t hat is "op t imal " f or more tha n SMALL of the

va l ues i n the i nter val. Thi s constr aint doe s not apply to th e r i ghtm ost
in t erva l .

(b) I f V[I] is the sm alles t value fo r at trib ute A in the t rain i ng s et tha t is
la r ger than the valu es i n in t erva l I then t here i s n o clas s C that i s opti mal
bot h fo r V[I] and for inte r val I .

4. FOR EACH ATTRI BUTE, A, (use t he n omina l ver s ion of n umeri cal a t trib utes) :
(a) C onst r uct a hyp othe s is invo l vin g at trib ute A by se l ecti ng, for ea ch v alue V of

A (and also f or "m i ssin g"), an op t imal clas s for V. I f seve r al c l asse s a re
opt imal for a va l ue, choos e among th em ra ndoml y

(b) a dd th e c onst r ucte d h ypot hesi s t o a set ca l led HYPO THESES. T his set will
ul t imat ely c onta i n on e hyp othes i s fo r eac h att r ibu t e.

5. 1 R: choo se the r ule fro m t he set H YPOTHESES h aving t he h i ghes t ac curac y on the
tr ainin g set (if ther e are seve r al " best" rule s , c hoose amon g the m at r ando m).

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

4

1R Training Example

1R generates one rule per attribute (SMALL=5 here)
out. { overcast ⇒ yes (4/0), rainy ⇒ yes (3/2),

sunny⇒no(2/3) } 71%
windy { false ⇒ yes (6/2), true ⇒ yes(3/3) } 64%
hum. { <82.5 ⇒ yes (6/1), ≥82.5 ⇒ no (3/4) } 71%
• Sort by humidity. Begin at top, noting for each

value which class is optimal (may be many, e.g.
for 90: yes and no). Count how often each class
is optimal; continue until at least one class is
optimal more than SMALL times = cond. (a).

• Apply cond. (b) to see if interval can be
extended. If not, set interval end halfway
between value and next value (=(80+85)/2 here)

• Continue for additional intervals, or until end has
been reached.

• Missing values (if present) are put into a separate
pseudo-interval with assigned optimal class.

temp { <77.5⇒ yes (7/3), ≥77.5⇒ yes (2/2) } 64%

O utlo o k T H W indy P la y?
overcast 6 4°F 6 5% true yes

rai ny 6 5°F 7 0% true n o
sunny 6 9°F 7 0% f al se yes
sunny 7 5°F 7 0% true yes

overcast 8 1°F 7 5% f al se yes
rai ny 6 8°F 8 0% f al se yes
rai ny 7 5°F 8 0% f al se yes
sunny 8 5°F 8 5% f al se n o

overcast 8 3°F 8 6% f al se yes
sunny 8 0°F 9 0% true n o

overcast 7 2°F 9 0% true yes
rai ny 7 1°F 9 1% true n o
sunny 7 2°F 9 5% f al se n o
rai ny 7 0°F 9 6% f al se yes

For comparison:
Baseline (0R): 64%

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

5

How to improve on 1R?

How to reduce 1R's bias / increase its complexity?
• Combine 1R rules of several attributes (~ 1R*, Holte 1993)

+ slightly more expressive – very limited improvement
• Allow rules based on more than one attribute

+ much more expressive
– curse of dimensionality: 2p if we consider all possible attribute subsets(!)
– worse estimation of optimal class: for some combinations of attributes,

very few or even no examples may exist.

• Divide-and-Conquer: Apply algorithm recursively! Choose best attribute at
top and then recursively create rules for each subset instead of just counting
the most common class. Repeat until "pure" (=only examples of the same
class). This creates a decision tree of attribute and class values.
Works slightly differently. Numeric attributes are only
split (i.e. propagated into different subtrees) at a single
value. Attributes are chosen by information gain, since
accuracy is not available until the whole tree has been
constructed.

Outlook?

Humidity? Windy?

sunny rainyovercast

yes

yes no yes no

≤75 >75 false true

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

6

What is a Decision Tree?

A recursive structure of attribute/class value decisions...

...which is equivalent to a set of rules, one for each path from the root node:

outlook=sunny & humidity≤75 ⇒ yes

outlook=sunny & humidity>75 ⇒ no

outlook=overcast ⇒ yes

outlook=rainy & windy=false ⇒ yes

outlook=rainy & windy=true ⇒ no

Outlook?

Humidity? Windy?

sunny rainyovercast

yes

yes no yes no

≤75 >75 false true
Leaf node
(= class
decision)

Intermediate
node

(numeric split)

Splitpoint for
numeric

attr. (=75)

Root node
(nominal split)

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

7

Basic Observations

Some basic observations on decision trees in general

• If we have once split on a nominal (qualitative) attribute, another split on the
same attribute is meaningless - all examples within each subtree already have
the same value for this attribute. Multiple splits on numeric (quantitative)
attributes are possible, with different splitpoints, but at most s-1 for s unique
values – log2(s) if we always spli t at the median value of each set.

• The number of examples in each subtree will be smaller than the number at
each node, provided we follow 1. and the attribute is not constant over all
examples. In the latter case, splitting is also meaningless.

1. and 2. show that this process will stop at (possibly multiple) examples with

exactly the same attribute values - regardless of how we split!

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

8

Basic Observations (2)

3. Provided training data is consistent (i.e. no two examples have exactly the
same values for all attributes and different classes), and we do not stop before
each leaf contains examples with the same values for all attributes, each tree
stores the full training data (disregarding example order), again regardless of
how we split. There are exponentially many trees which are fully consistent
with training data (i.e., 100% accuracy)

Problem: Which tree to choose among those consistent with training data?

Common Heuristic: Ockhams Razor

“ Non sunt multiplicanda entia praeter necessitatem.”

(Entities should not be multiplied beyond necessity.)

William of Ockham (1290? - 1349?)

Translation: Prefer the smallest/simplest theory among all consistent ones.

However, it is generally not feasible to exhaustively search for the smallest tree.

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

9

Top-Down Induction of Decision Trees

Prominent members: ID3, C4.5, CART, ...

Recursive algorithms

• Creates decision tree step-by-step

• Begins with an empty tree

Heuristic algorithms

• Aims at constructing a small tree, but cannot guarantee that it will find the
smallest tree – since that would mean constructing all possible trees.

Greedy algorithms

• At each step, makes decision (which attribute/spli tpoint to choose) based on a
local optimali ty criterion (information gain)

• Blind to attributes that are relevant only in combination

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

10

ID3+

• Bias: Low. Smaller trees are preferred over longer trees. Trees that place high
information gain attributes close to the root are preferred to those that do not.

• Variance: High. A single example may change the tree completely.

Pseudocode for ID3+ (i.e. ID3 extended with numeric attribute splits)
Start with root node and given all training examples

If all examples in current node belong to same class =>
make current node a leaf node and EXIT

Select best nominal attribute, or best attribute /
splitpoint combination for numeric attribute.

Create branch + subnodes for all values for nominal
best attribute, or for < and >=splitpoint if best
attribute is numeric.

Split training examples according to values of best
attribute into subsets for each subnode.

Call ID3+ recursively for each subnode node with the
appropriate subset of training examples.

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

11

Decision Tree - Bias & Variance

Low bias, high variance. Numeric attributes are split binary via splitpoint.
Concept boundaries are axis-parallel hyperrectangles (see above)

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

12

What is the best local split?

Intuition: The attribute which best discriminates between the classes, and thus is
likely to create a small tree.

⇒ Information gain: Expected increase in information (=reduce in entropy) if data
are split by the values of the attribute (Information Theory by Shannon)

Notation (assumes two classes)

A ... some attribute with possible values v1, ..., vk

C ... set of training examples associated with current node

N ... number of examples in C (N = |C|)

p, n ... number of positive / negative examples in C (p+n = N)

pi, ni ... number of positive / negative examples in subnode Ci

C=A?

C2C1 C3 Ck...

v1 v2 v3 vk

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

13

Entropy & InfoGain

Entropy(C) = – p/(p+n) log2 p/(p+n) – n/(p+n) log2 n/(p+n)

Entropy is a measure of the "impurity" of set C with respect to the class labels

InfoGain(C,A) = Entropy(C) – Σ|Ci|/|C| * Entropy(Ci)

InfoGain is the expected reduction in entropy if the data is split along values of
attributes A. ID3 selects attribute with highest InfoGain in each step.

Note: Entropy(C) is independent of A → maximizing InfoGain(C,A) is equivalent
to minimizing the second term, i.e the weighted sum of entropies.

C=A?

C2C1 C3 Ck...

v1 v2 v3 vk

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

14

Splitting on numeric attributes

For numeric attributes, splitting on all possible values leads to weak generalization
→ Binary split on a single value (=threshold, splitpoint). This is done by

considering all (reasonable) split points and computing InfoGain for each of
them. Among all information gain values from nominal attributes, and all
splitpoints from numeric attributes, the maximum is chosen by ID3.

Example: Split on humidity from the weather dataset. E(C) = 0.940 [bits]
67.5 (1/0 vs. 8/5) → InfoGain = 0.048 [bits]
72.5 (3/1 vs. 6/4) → InfoGain = 0.015 [bits]
82.5 (6/1 vs. 3/4) → InfoGain= 0.152 [bits] (best splitpoint for humidity)
85.5 (6/2 vs. 3/3) → InfoGain = 0.048 [bits]
88.0 (7/2 vs. 2/3) → InfoGain = 0.102 [bits]
90.5 (8/3 vs. 1/2) → InfoGain = 0.079 [bits]
95.5 (8/5 vs. 1/0) → InfoGain = 0.048 [bits]

Hum. = 65 70 75 80 85 86 90 91 95 96
Play=yes 1 2 1 2 0 1 1 0 0 1
Play=no 0 1 0 0 1 0 1 1 1 0

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

15

Example: Choose root node for weather

Choose attribute with highest InfoGain

InfoGain(Outlook) = .940 – 5/14*.971 – 4/14*0.00 – 5/14*.971 = 0.246 [bits]
InfoGain(Windy) = .940 – 8/14*.811 – 6/14*1.00 = 0.048 [bits]
Best splitpoint for numeric attribute humidity (82.5) = 0.152 [bits]
Best splitpoint for numeric attribute temperature (84.0) = 0.113 [bits]

Overall best split: Outlook = Root node
Propagate examples into three subnodes according to values of Outlook...

Outlook?

sunny rainyovercast

yes=4
no=0

yes=2
no=3

yes=3
no=2

Windy?

false true

yes=6
no=2

yes=3
no=3

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

16

Example: Choose root node for weather (2)

Call ID3+ recursively for each subnode node with the
appropriate subset of training examples (see above)

Outlook?

sunny rainyovercast

O utlo o k T H W indy P la y?
sunny 6 9°F 7 0% f al se yes
sunny 7 5°F 7 0% true yes
sunny 8 5°F 8 5% f al se n o
sunny 8 0°F 9 0% true n o
sunny 7 2°F 9 5% f al se n o

O utlo o k T H W indy P la y?
overcast 64°F 65% true yes
overcast 81°F 75% f al se yes
overcast 83°F 86% f al se yes
overcast 72°F 90% true yes

O utlo o k T H W indy P la y?
rai ny 6 5°F 7 0% true n o
rai ny 6 8°F 8 0% f al se yes
rai ny 7 5°F 8 0% f al se yes
rai ny 7 1°F 9 1% true n o
rai ny 7 0°F 9 6% f al se yes

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

17

Lecture Plan Update

Change in (Lecture) Plan: We will first finish the most
important learning systems for another few weeks, and
then look at the advantages/disadvantages and specific
examples using these learning algorithms.

Next Lesson (in two weeks at IMKAI)
• Overfitting avoidance for decision trees: Pre/Postpruning

• Dealing with missing values in decision trees & in general
• Common preprocessing transformations

• Bayesian Methods
...

