
Alexander K. Seewald

Development for Android Devices

Introduction & Motivation

© 2012
alex@seewald.at
www.seewald.at

What makes smartphones so compelling?

• (Almost) Always on, instantly available

• (Computationally) Ever more powerful

• Localization: Knows where it is
• Sensors: Knowns how it is held & its environment. Knows

wearer movement patterns (walking, running, up/down stairs)

• Mobile internet access anytime, anywhere

• Does everything: email, internet, calendar, contacts, remote
administration, staying fit, entertainment, ... and telephony.

© 2012
alex@seewald.at
www.seewald.at

A Short Timeline of Smartphones

2000: Ericsson R380 Smartphone with touchscreen, marketed as
smartphone, but very limited capability

2001: Palm Kyocera 6035: Combination of PDA and mobile
phone with limited web browsing

2002: First Blackberry with voice, data, browser, messaging and
organizer applications - first true smartphone

2004: HP iPaq h6315: Combination of successful PDA HP iPaq
2215 with cellular capability

2007: Nokia N8: First smartphone with stylus-free capacitive
touchscreen & multi-touch capability

 Original iPhone w/ multi-touch, only 3rd party web-apps
2008: HTC Dream, first Android (1.0) smartphone
 Apple App Store starts Jul. 2008
 parallel to 2nd Gen. iPhone w/ 3G support
 Google Android Market starts Oct. 2008

© 2012
alex@seewald.at
www.seewald.at

Why develop for Android devices? (1)

• Large user base - 400 million units sold @ 06/2012
[iOS: 365 million]

• almost 2,000 device types - choose the perfect phone!
[vs. iOS: one size fits all]

• 15 billion apps sold @ 05/2012
[iOS: 25 billion]

• (Computationally) very powerful smartphones

• Very easy app implementation (Language: Java)
[iOS: objectiveC, C/C++]

© 2012
alex@seewald.at
www.seewald.at

Why develop for Android devices? (2)

• Distribute apps world-wide

• One-time fee for developers, any platform
[iOS: Pay three times as much every year]

• Correct VAT (MWST) processing and reporting
[iOS: Apple does not care about European taxes]

• SDK works on any platform - Windows, Linux, MacOS
[iOS: Buy physical Mac or illegally build MacOS VMware]

• New apps or updates you create are available in <15min
[iOS: Wait several weeks & possibly get rejected]

© 2012
alex@seewald.at
www.seewald.at

Top Android Paid Apps (1)
Name Type AppLT Turnover (€)

DocumentsToGo Full Version Key App 8,692,500

Draw Something OMGPOP Game 8,310,000

Beautiful Widgets Widget 7,140,000

SwiftKey X App 6,720,000

Camera ZOOM FX Music & Photo 5,970,000

Minecraft - Pocket Edition Game 4,680,000

Papier Kamera Music & Photo 4,470,000

Poweramp Full Version Unlocker Music & Photo 2,992,500

SoundHound Music & Photo 2,992,500

Shazam Encore Music & Photo 2,992,500

Fruit Ninja Game 2,790,000

Root Explorer (File Manager) App 2,692,500

Where's My Water Game 2,280,000

Doodle Jump Game 2,250,000

Cut the Rope Game 2,040,000

Titanium Backup PRO Key * root App 1,497,000

ROM Manager (Premium) App 1,497,000

Grand Theft Auto III Game 1,434,000

Star Chart Game 1,047,000

Endomondo Sports Tracker PRO App 858,000

Tapatalk Forum App App 747,000

Osmos HD Game 747,000

HD Widgets (3,0 Beta) Widget 597,000

Asphalt 6: Adrenaline Game 592,500

Smart Tools - Werkzeugkasten App 570,000

TuneIn Radio Pro Music & Photo 525,000

Flick Golf! Game 237,000

Cut the Rope: Experiments Game 228,000

Angry Birds Space Premium Game 225,000

NOVA 3 - Near Orbit,, Game 164,700

Rebuild Game 57,750

Game 35%

Widget 10%

Music & Photo 26%

App 30%

App lifetime(LT) Turnover
= cost * approx.downloads
(@ 05/2012)

© 2012
alex@seewald.at
www.seewald.at

Top Android Paid Apps (2)

Caveats

• Fierce Competition: 450,000 apps, 100,000 active developers

• Device Fragmentation
Hard to ensure good user experience for 2000+ devices!

• Growth in apps bigger than growth in revenue.
Revenue per app is actually dropping at present!

• Popularity rules! Top lists are frequented often.
Just uploading won't work. Need marketing as well!

© 2012
alex@seewald.at
www.seewald.at

Which apps do I use regularily? (1)

HTC Legend (2010)
• EMail, Calendar, Contacts, SMS (all preinstalled)

The "killer" apps ;-)

• ConnectBot - SSH client to administer servers everywhere
• Qando (Vienna public transport) & Google Maps to offset my

bad sense of orientation
• Mein Einkaufszettel (light weight German app)
• Barcode scanner (to test QR codes)
• World Time (a must for international collaborations!)
• Colorblindness Sim/Correction (a must for colorblind people!)
• Camera (for snapshots)
• Bubble (air level / "Wasserwaage")
• The Whip (for lazy students)

© 2012
alex@seewald.at
www.seewald.at

Which apps do I use regularily? (2)

Lenovo Thinkpad Tablet (2011)
• ConnectBot - SSH client

• Colorblindness Sim/Correction

• Writepad stylus (Note app w/o handwriting recognition)

• TabletPresenter (self-written app w/ laserpointer emulation
and tiled scaling of very large images, not on market)

• QuickSlides (basic presentation app)

• MXPlayer (the best Android video player on the market)

• JJComics (comic & ebook reader)

© 2012
alex@seewald.at
www.seewald.at

Which apps do you use regularily?

iPhone: 4 Android: 3(1) Neither: 0

Class of 11/2012 DUK
• EMail, Kontakt, SMS... 4
• WhatsApp
• Online Banking
• Spiele: TurboKids (droidGames), Monopoly, Bad Piggies, Fifa

am iPad (steuern mit iPhone)
• Taschenlampe 3
• Google Drive
• Facebook App 3
• DerStandard
• SoundHound (MusicID fingerprinting)
• IMDB
• Unified Remote
• Evernote
• Wetter-Widget

© 2012
alex@seewald.at
www.seewald.at

Which apps did you pay for?

Myself
• Writepad 0.69 €
• Labyrinth (1,000 levels) 2.39 €
• Contact Lookup Pro 1.83 €

Class of 11/2012 DUK
• Keine 3
• Etwas 1
• Sehr viele 2 (TapTalk Plus, 20 EUR/Monat)

© 2012
alex@seewald.at
www.seewald.at

Android vs. iPhone: mixed...

Android / Google Play
• ~ 60% of apps available for free
• A free app cannot be made paid without losing all downloads

(thus the importance of using in-app billing from the start...)
• Users are less likely to pay for apps
• May be one reason for popularity of Android!

iOS / Apple App Store
• ~ 30% of apps available for free
• Pricing change at a click, from free to paid and vice versa
• Users are more likely to pay for apps
• May be because they have no choice!

© 2012
alex@seewald.at
www.seewald.at

... so it makes sense to do both!

Options for cross-development
• Just use web-applications!
– Most features supported (incl. multi-touch), interfaces vary
– Easy to support other platforms (BlackBerry, Kindle Fire, ..)
– New iOS6: You can finally upload files from the iPhone!
– BUT not feasible for real-time image processing...

• Proprietary solutions using non-Android toolchain
– Appcelerator's Titanium, Rhodes, PhoneGap
– Program in Javascript/Ruby/Python. Hmm.... webapps? ;-)
– Vendor lock-in is a real problem

• Open source solutions using Android toolchain
(Java bytecode to iPhone native app)
– XMLVM for pure Java apps (no NDK)

(this is what we used to port Dancing Guide to iPhone)

© 2012
alex@seewald.at
www.seewald.at

XMLVM

Workflow
• Develop your Android app normally
• Compile to Java bytecode using Android toolchain
• XMLVM transforms Java bytecode into objectiveC
• Java classes are (seldom) reimplemented or (often) mapped

to existing iOS classes using simple stubs; most is already
there (e.g. had to implement audio recording into memory
buffer - amazing how similar both platforms are at this level!)

• Output is the objC source code for a native app that needs to
be compiled using the normal iPhone toolchain on MacOS

• Need to be well versed in code generator / XML
transformation schemes to make this work out of the box.
However, this only needs to be done once!

Result: One (Java)-Codebase for both Android and iOS!
http://xmlvm.org

http://xmlvm.org/

© 2012
alex@seewald.at
www.seewald.at

App Development 101

Planning for revenue
• Free app & in-app billing (freemium)

– slightly more complex code, only from 2.3.3 upwards
+ very convenient for user, easy to extend and test
Needs BILLING permission - cannot be added after 1st upload

• Free app & separate paid app (free/paid)
– two apps must be managed, different ratings & feedback
+ works for old API levels (<2.3.3)

• Free app (ad-supported)
– get money only when user clicks on an ad...
+ good way to monetize app w/ many downloads (>1mill.)

Never start with just a paid app!
Free apps can never be made paid again!
Anecdotal: Freemium has ~3x revenue of Free/Paid

© 2012
alex@seewald.at
www.seewald.at

App Development 101

Planning for... something else
• Building apps for fame instead of fortune (example later)

• Getting more people on your website
(~ 50% of our website traffic comes from our apps)

• Guerilla Marketing: Build apps that make fun of competition, or
just inform your customers for free (e.g. Apo-App, Quando)

• Show off your skills as app developer to get hired / new orders

• Demo apps: test code & get feedback on performance/bugs

• Teach Android development to students ;-)

© 2012
alex@seewald.at
www.seewald.at

Standard capabilities of Android Smartphones (1)

• Multi-touch screen

• Measuring gravity & acceleration, magnetic field (compass)

• GSM/WLAN/GPS localization at no cost (+ Google Maps)

• WLAN
• Bluetooth
• NFC

• Microphone
• Speaker

• Camera (back-facing, often also second front-facing)

© 2012
alex@seewald.at
www.seewald.at

Standard capabilities of Android Smartphones (2)

• Calendar, Contacts, EMail, ... databases are all integrated as
part of the system. It is possible to write new apps for all these
functions.

• Write new keyboards / input methodologies (10-finger MT?)

• Write new screen locking apps

• It is even possible to write own dialers and check on numbers
which are dialed or received (e.g. to block telemarketers - CIA
Anruferkennung by Addafix)

© 2012
alex@seewald.at
www.seewald.at

Standard capabilities of Android Smartphones (3)

• Internal sensors are accessible using simple APIs

• Simple and robust localization using available systems

• The Google Maps API integrates global mapping into your app

• Show website or HTML content using WebView

• Many predefined dialogs: Progress, Alert, yes/no/cancel, text,..

• Easy real-time 3D via integrated OpenGL

© 2012
alex@seewald.at
www.seewald.at

Standard capabilities of Android Smartphones (4)

• Almost complete Java library. It is very easy to port almost any
Java-based code to Android.

• Using native code in C/C++ via Android NDK - moderately
difficult to port arbitrary C/C++ libraries and call from Java (JNI
is still a bottleneck in some cases)

• Alpha Blending allows to add content in front of a camera
preview for Augmented Reality apps. In parallel, preview
images can be received via callback and processed (still not
easy to completely change image as we will see later)Internal
sensors are accessible using simple APIs

© 2012
alex@seewald.at
www.seewald.at

Standard capabilities of Android Smartphones (5)

Caveats
• A few capabilities need system/signature permissions, only

possible for preinstalled apps. Will get strange error message..
– Direct screen framebuffer access via SurfaceFlinger
– Updating phone firmware
– Backup all apps and settings

These can only be done with a rooted phone. Some phones
are temporarily rootable (until next reboot) using special apps.
However you cannot rely on this.

• People may be loath to install apps that can e.g. monitor all
keystrokes or know the screen lock combination (at least
when they also have permission to access the Internet ;-)

© 2012
alex@seewald.at
www.seewald.at

Let's show some apps! (1)

• Colorblindness Simulation/Correction

© 2012
alex@seewald.at
www.seewald.at

Let's show some apps! (1)

• Colorblindness Simulation/Correction

Why? I am red/green colorblind and always found it
cumbersome to explain this, so simulation mode came first. The
correction mode was almost an afterthought but boosted app
downloads significantly.

Lessons learned?
• The initial version had a bug which was fixed too late, yielding

a lot of 1* ratings. It took almost a year to get over this.
• Changing description text to include synonyms for

colorblindness such as daltonize, daltonization, ... was very
helpful. In fact CBS is still the most popular free app with
correction mode and quite high up in the rankings.

© 2012
alex@seewald.at
www.seewald.at

Let's show some apps! (2)

• Best Moves - Dancing Guide

© 2012
alex@seewald.at
www.seewald.at

Let's show some apps! (2)

• Best Moves - Dancing Guide

Why? I always found it hard to identify dance music; and for live
music and classical music, fingerprinting approaches are not
working. So there was an opportunity to do this.

Lessons learned?
• Initially I put in only a paid version. After six months there were

few downloads... After making it free, there were thousands of
downloads within a few days. I should have made a free
version from the beginning.

© 2012
alex@seewald.at
www.seewald.at

Let's show some apps! (3)

• Wooden Easter Ratchet

© 2012
alex@seewald.at
www.seewald.at

Let's show some apps! (3)

• Wooden Easter Ratchet

Why? Because I could. Also because it is fun!

Lessons learned?
• Rotation works stable only along two axes, but confusing. One

axis is enough. Some tablets rotate on the wrong axis...
• Some phones: Camera previews rotated 90°

Only fixable from 2.3.3 upwards (display orientation available)
• All phones: OpenGL Overlay is incorrectly restored after

resume in portrait mode - still not fixed in Android 4!

© 2012
alex@seewald.at
www.seewald.at

Let's show some apps! (4)

• Money Maker (~ Markerless Augmented Reality Demo)

© 2012
alex@seewald.at
www.seewald.at

Let's show some apps! (4)

• Money Maker (~ Markerless Augmented Reality Demo)

Why? The initial idea was to make an augmented reality system
to remove political advertising. As a step towards this, I wanted
to build a demo that would use an object that anyone has with
them (rather than having to print it out), and the money doubling
was just a funny story around that.

Lessons learned?
• The used system works well but a significant amount of time

needs to be invested into optimizing the recognition for each
image (1-2 weeks)

Next time when there are elections in Austria, look out for
WahlWerbungWeg by Seewald Solutions. ;-)

© 2012
alex@seewald.at
www.seewald.at

Let's show some apps which have not been done by us! (5)

• MedCam - determine heart rate from face blood flow changes
– Done by MIT on iOS recently but trivial to reimplement...
– First such app on Android, only 2,000 downloads so far
– Desperately needs help in app-design & graphics!

© 2012
alex@seewald.at
www.seewald.at

Which apps do you want to do / would like to see?

Class of 11/2012 DUK
• Spiele
• Parksünder-Empfehlungsapp
• Berggipfel-Identifizierung
• Digitale Wanderstempel
• Innovative NFC-Anwendung

© 2012
alex@seewald.at
www.seewald.at

© 2012
alex@seewald.at
www.seewald.at

Alexander K. Seewald

Development for Android Devices
App Development 101

Features, Permissions & Screen Sizes

© 2012
alex@seewald.at
www.seewald.at

App Development 101

App idea kill list

• No me-too apps unless significantly better than competition
Don't try to copy something which already works!

• Must have sufficiently large number of interested users
If you need an app just for yourself, make it free.

• Customers must be willing to pay for the app's functionality
Must not already be available for free or easy to copy.

• Keep development costs low! Think about easiest way to
implement basic concept, and show prototype to customers.

© 2012
alex@seewald.at
www.seewald.at

What makes a successful app?

Based on a comprehensive analysis of four months tracking of
new Android apps, the following patterns emerged. Percentages
are successful apps as defined by more than 50,000 downloads
at the end of the observed period. Free apps were used for this
analysis since the sample of paid apps was too small.

• Upload your app on a Friday or Monday, never on a Thursday

New apps are shown in a special area of the
market, and before the weekend, more
people are looking there.

Mon 3.13%

Tue 2.31%

Wed 2.51%

Thu 0.84%

Fri 3.45%

Sat 3.17%

Sun 2.46%

© 2012
alex@seewald.at
www.seewald.at

What makes a successful app?

• Get more than 100 downloads within 2h of first upload

• Get a rating of at least 4.5 within 2h of first upload

Downloads Prop. Successful

<50 2.27%

50-100 13.04%

100-500 25.00%

Ratings Interval Prop. Successful

[0] 0.71%

(0,4) 5.71%

[4,4.5) 14.71%

[4.5,5) 26.67%

[5] 7.04%

© 2012
alex@seewald.at
www.seewald.at

What makes a successful app?

• Get more than six people to rate your app within 2h of 1st upl.

• Fill out recent changes, contact website, poss. contact phone

Yes No

Contact Website 2.60% 2.21%

Contact Phone 2.62% 2.49%

Recent Changes 3.26% 2.32%

RatingsCount Interval Prop. Successful

[0] 0.71%

[1] 4.05%

[2] 11.50%

[3,6) 16.67%

[6,inf) 50.00%

© 2012
alex@seewald.at
www.seewald.at

App Development 101

Choose minimum API level to support
(API level = Android version)
• Most common: Gingerbread (2.3.3) = 58.8%
• Older versions (<2.3.3) still at 16.8% (Froyo (2.2) = 12.9%)
• Don't target Honeycomb (3.*) - very buggy! few users anyway...
• Newest version: Ice Cream Sandwich (4.0) = 25% share

Fixed most bugs of earlier version, quite good & stable

• It's possible but tricky to support
multiple API levels using reflections

• Worse alternative: Multiple apps
with API level market filter

http://developer.android.com/about/dashboards/index.html

http://developer.android.com/about/dashboards/index.html

© 2012
alex@seewald.at
www.seewald.at

App Development 101

Which hardware features are absolutely necessary for the app?
(used for Market Filtering, depends on API level)
• Microphone
• Camera (Front, Autofocus)
• Touchscreen (gesture only, >2/>5 touches in parallel)
• Sensors (Accelerometer, Gyroscope, Compass, Light,

Temperature,...)
• GPS
• Wifi
• Bluetooth

...

Features available on specific device (needs to be connected)
adb shell pm list features

© 2012
alex@seewald.at
www.seewald.at

App Development 101

Full feature list for Lenovo Thinkpad Tablet (Android 4.0.3)

Features

feature:android.hardware.bluetooth feature:android.hardware.touchscreen

feature:android.hardware.camera feature:android.hardware.touchscreen.multitouch

feature:android.hardware.camera.autofocus feature:android.hardware.touchscreen.multitouch.distinct

feature:android.hardware.camera.front feature:android.hardware.touchscreen.multitouch.jazzhand

feature:android.hardware.faketouch feature:android.hardware.usb.accessory

feature:android.hardware.location feature:android.hardware.usb.host

feature:android.hardware.location.gps feature:android.hardware.wifi

feature:android.hardware.location.network feature:android.software.live_wallpaper

feature:android.hardware.microphone feature:android.software.sip

feature:android.hardware.screen.landscape feature:android.software.sip.voip

feature:android.hardware.screen.portrait feature:com.cisco.anyconnect.permissions.patch.lenovo

feature:android.hardware.sensor.accelerometer feature:reqGlEsVersion=0x20000

feature:android.hardware.sensor.compass feature:android.hardware.sensor.light

http://developer.android.com/guide/topics/manifest/uses-feature-element.html

http://developer.android.com/guide/topics/manifest/uses-feature-element.html

© 2012
alex@seewald.at
www.seewald.at

App Development 101

Know your hardware multitouch capability!

• android.hardware.touchscreen

– no multitouch capability implied, can process single touches

• android.hardware.touchscreen.multitouch

– two-point multitouch capability (pinch, zoom) but no
independent tracking of touch points

• android.hardware.touchscreen.multitouch.distinct

– at least two independently tracked touch points
• android.hardware.touchscreen.multitouch.jazzhand

– at least five independently tracked touch points

Some Android tablets can independently track ten touch points...

© 2012
alex@seewald.at
www.seewald.at

App Development 101

Camera

• android.hardware.camera

– has one (almost always back-facing) camera

• android.hardware.camera.autofocus
– has at least one camera with autofocus. Missing: only fixed-focus

• android.hardware.camera.front
– has a front facing camera (facing the user, front side of phone)

© 2012
alex@seewald.at
www.seewald.at

App Development 101

Localization

• android.hardware.location

– has a way of localizing itself (unspecified)

• android.hardware.location.network

– can locate using GSM network (very inaccurate)

• android.hardware.location.gps
– can locate using GPS (accurate outside, unusable inside)

• android.hardware.wifi
– Every phone with Wifi can roughly localize with it using Google's

WLAN access point fingerprinting system. It is currently more
accurate than GSM and less accurate than GPS.

© 2012
alex@seewald.at
www.seewald.at

App Development 101

Others (1)

• android.hardware.bluetooth

– Bluetooth support (not yet BT 4.0 like the iPhone 4S/5, sadly)

• android.hardware.microphone

– has a microphone (almost always the case ;-)

• android.hardware.screen.landscape

• android.hardware.screen.portrait

– supports portrait / landscape mode (almost always, except
Google TV which is fixed in one mode for obvious reasons)

© 2012
alex@seewald.at
www.seewald.at

App Development 101

Others (2)

• android.hardware.usb.accessory
– can be attached as USB peripheral device (almost always)

• android.hardware.usb.host
– can be attached as USB host (= can use USB peripherals and

USB sticks on its own; seldom)
• android.hardware.nfc

– supports Near-Field-Communication (NFC)
• android.software.live_wallpaper

– support for live wallpapers (android.service.wallpaper)
• android.software.sip

– supports Session-Initiation-Protocol (SIP)
• android.software.sip.voip

– supports SIP and Voice-Over-IP (VOIP)
(you will be able to install Skype anyway ;-)

© 2012
alex@seewald.at
www.seewald.at

App Development 101

Sensors (0)
Rather than using camera or microphone and complex processing,
many applications work with simple internal sensors. Even
augmented reality apps can be made using compass,
accelerometer/gyroscope and a camera preview with overlay!

• android.hardware.sensor.*
– corresponds to sensor of TYPE_*

If you app absolutely needs a sensor to work, put it into
features. But better is to design a secondary interface and
check for sensor presence during runtime, automatically
switching to secondary interface (e.g. touchscreen)

© 2012
alex@seewald.at
www.seewald.at

App Development 101

Sensors (1)

• TYPE_PROXIMITY: distance to ear, front side of the phone.
Switches off screen when phone is held to ear. Ubiquituous.

• TYPE_LIGHT: measures light in lux, supposedly calibrated.
Very uncommon.

• TYPE_AMBIENT_TEMPERATURE: measures temperature in
degrees celsius. Never seen.

• TYPE_PRESSURE: measures atmospheric pressure. N.s.

• TYPE_RELATIVE_HUMIDITY: measure humidity. Never seen.

© 2012
alex@seewald.at
www.seewald.at

App Development 101

Sensors (2)

• TYPE_ACCELEROMETER: measures acceler-
ation via 3D vector. Very common.

• TYPE_GYROSCOPE: measures rotation angles
along X/Y/Z axis. Not widely used since more
expensive than accelerometer.
Both can be used to determine position w.r.t. earth plane.

• TYPE_MAGNETIC_FIELD: measures magnetic field strength
in X/Y/Z direction (= a 3D compass)
Needed to measure rotation on a perpendicular axis vs. earth
plane, is far less accurate than rotation around other axes.

These are low-level sensors which should not be used. From
Gingerbread (2.3.3) we can rely on the following virtual sensors.

© 2012
alex@seewald.at
www.seewald.at

App Development 101

Sensors (3)
These sensors are computed from either accelerometer or
gyroscope (or hopefully both) plus magnetic field sensor.
• TYPE_GRAVITY: returns a vector indicating 3D direction and

magnitude of gravitiy (i.e. points exactly down)
• TYPE_LINEAR_ACCELERATION: returns a vector indicating

direction and magnitude of linear acceleration.
TYPE_ACCELERATION returns sum of these two sensors

• TYPE_ROTATION_VECTOR: returns rotation axis and angle
versus a reference coordinate system:
Z = straight up, Y = magnetic north, X implied
Uses either accelerometer or gyroscope plus
magnetic field sensor. Most accurate using all
three sensors.

© 2012
alex@seewald.at
www.seewald.at

App Development 101

Which permissions are absolutely necessary for the app?
(used for Market Filtering, depends on API level)
• Bluetooth (admin or user)
• Camera (implies Autofocus)
• Location (coarse, fine - implies GPS, install own provider)
• Record audio
• Telephony (call, modify state, process outgoing calls, sms...)
• Wifi (access state, change state)
• Sensors (Accelerometer, Gyroscope, Compass, Light,

Temperature,...)
• Write to external storage

...
Some permissions imply features! (see link on last page)
Permissions available on specific device (needs to be conn.)
adb shell pm list permissions -f

© 2012
alex@seewald.at
www.seewald.at

App Development 101
Full permissions list for Lenovo Thinkpad Tablet (Android 4.0.3)

permission:cisco.permission.NET_ADMIN permission:android.permission.INJECT_EVENTS permission:com.android.email.permission.ACCESS_PROVIDER

permission:android.intent.category.MASTER_CLEAR.permission.C2D_MESSAGE permission:android.permission.INSTALL_DRM permission:com.android.vending.billing.ADD_CREDIT_CARD

permission:android.permission.ACCESS_ALL_DOWNLOADS permission:android.permission.INSTALL_LOCATION_PROVIDER permission:com.android.vending.billing.BILLING_ACCOUNT_SERVICE

permission:android.permission.ACCESS_BLUETOOTH_SHARE permission:android.permission.INSTALL_PACKAGES permission:com.android.vending.billing.IN_APP_NOTIFY.permission.C2D_MESSAGE

permission:android.permission.ACCESS_CACHE_FILESYSTEM permission:android.permission.INTERNAL_SYSTEM_WINDOW permission:com.android.vending.INTENT_VENDING_ONLY

permission:android.permission.ACCESS_CHECKIN_PROPERTIES permission:android.permission.MANAGE_APP_TOKENS permission:com.android.vending.permission.C2D_MESSAGE

permission:android.permission.ACCESS_DOWNLOAD_MANAGER permission:android.permission.MANAGE_NETWORK_POLICY permission:com.android.vending.permission.UPDATE_MARKET

permission:android.permission.ACCESS_DOWNLOAD_MANAGER_ADVANCED permission:android.permission.MASTER_CLEAR permission:com.android.vending.TOS_ACKED

permission:android.permission.ACCESS_DRM permission:android.permission.MODIFY_NETWORK_ACCOUNTING permission:com.google.android.apps.maps.permission.C2D_MESSAGE

permission:android.permission.ACCESS_SURFACE_FLINGER permission:android.permission.MOVE_PACKAGE permission:com.google.android.gm.permission.READ_ATTACHMENT_PREVIEW

permission:android.permission.ALLOW_ANY_CODEC_FOR_PLAYBACK permission:android.permission.NVIDIA_CPU_POWER permission:com.google.android.googleapps.permission.ACCESS_GOOGLE_PASSWORD

permission:android.permission.BACKUP permission:android.permission.PACKAGE_USAGE_STATS permission:com.google.android.googleapps.permission.GOOGLE_AUTH.doraemon

permission:android.permission.BATTERY_STATS permission:android.permission.PACKAGE_VERIFICATION_AGENT permission:com.google.android.googleapps.permission.GOOGLE_AUTH.geowiki

permission:android.permission.BIND_DEVICE_ADMIN permission:android.permission.PERFORM_CDMA_PROVISIONING permission:com.google.android.googleapps.permission.GOOGLE_AUTH.goanna_mobile

permission:android.permission.BIND_INPUT_METHOD permission:android.permission.READ_FRAME_BUFFER permission:com.google.android.googleapps.permission.GOOGLE_AUTH.panoramio

permission:android.permission.BIND_PACKAGE_VERIFIER permission:android.permission.READ_INPUT_STATE permission:com.google.android.googleapps.permission.GOOGLE_AUTH.reader

permission:android.permission.BIND_REMOTEVIEWS permission:android.permission.READ_NETWORK_USAGE_HISTORY permission:com.google.android.googleapps.permission.GOOGLE_MAIL_SWITCH

permission:android.permission.BIND_TEXT_SERVICE permission:android.permission.REBOOT permission:com.google.android.gsf.subscribedfeeds.permission.C2D_MESSAGE

permission:android.permission.BIND_VPN_SERVICE permission:android.permission.SEND_DOWNLOAD_COMPLETED_INTENTS permission:com.google.android.partnersetup.permission.ACCESS_PROVIDER

permission:android.permission.BIND_WALLPAPER permission:android.permission.SET_ACTIVITY_WATCHER permission:com.google.android.partnersetup.permission.UPDATE_CLIENT_ID

permission:android.permission.BRICK permission:android.permission.SET_ORIENTATION permission:com.google.android.providers.gsf.permission.WRITE_GSERVICES

permission:android.permission.CALL_PRIVILEGED permission:android.permission.SET_POINTER_SPEED permission:com.google.android.providers.settings.permission.READ_GSETTINGS

permission:android.permission.CHANGE_COMPONENT_ENABLED_STATE permission:android.permission.SET_TIME permission:com.google.android.providers.settings.permission.WRITE_GSETTINGS

permission:android.permission.CLEAR_APP_USER_DATA permission:android.permission.SHUTDOWN permission:com.google.android.talk.permission.RECEIVE_XMPP

permission:android.permission.CONFIRM_FULL_BACKUP permission:android.permission.STATUS_BAR permission:com.google.android.voicesearch.AUDIO_FILE_ACCESS

permission:android.permission.CONTROL_LOCATION_UPDATES permission:android.permission.STATUS_BAR_SERVICE permission:com.google.android.voicesearch.SHORTCUTS_ACCESS

permission:android.permission.COPY_PROTECTED_DATA permission:android.permission.STOP_APP_SWITCHES permission:com.humanengines.vortexhd.ACCESS_PROVIDER

permission:android.permission.CRYPT_KEEPER permission:android.permission.UPDATE_DEVICE_STATS permission:com.humanengines.vortexhd.external.email.permission.ACCESS_PROVIDER

permission:android.permission.DELETE_CACHE_FILES permission:android.permission.WRITE_GSERVICES permission:com.lenovo.indigo.mailcalendar.permission.ACCESS_AGENT

permission:android.permission.DELETE_PACKAGES permission:android.permission.WRITE_SECURE_SETTINGS permission:com.lenovo.indigo.mailcalendar.permission.ACCESS_PROVIDER

permission:android.permission.DEVICE_POWER permission:android.server.checkin.CHECKIN.permission.C2D_MESSAGE permission:com.lenovo.packageinstaller.SYSTEM_INSTALL

permission:android.permission.DOWNLOAD_CACHE_NON_PURGEABLE permission:cisco.permission.NET_RAW permission:com.mcafee.permission.VSM_READ_STATUS

permission:android.permission.FACTORY_TEST permission:cisco.permission.VPN permission:com.oovoo.permission.C2D_MESSAGE

permission:android.permission.FORCE_BACK permission:com.android.browser.permission.PRELOAD permission:com.wsandroid.suite.permission.C2D_MESSAGE

http://developer.android.com/reference/android/Manifest.permission.html

http://developer.android.com/reference/android/Manifest.permission.html

© 2012
alex@seewald.at
www.seewald.at

App Development 101

Most important permissions (1)
When initiating a sensitive action without having the correct
permission, your app will be killed with an appropriate error.
Permissions imply necessary hardware features automatically.
• android.permission.CAMERA
– allow Camera access (implies autofocus!)

• android.permission.INTERNET
– allow Internet access

• android.permission.WAKE_LOCK
– allow to keep device awake & screen on

• android.permission.RECORD_AUDIO
– allow to record audio

• android.permission.READ_EXTERNAL_STORAGE
• android.permission.WRITE_EXTERNAL_STORAGE
– allow to read/write to external storage (sdcard or USB stick)

© 2012
alex@seewald.at
www.seewald.at

App Development 101

Most important permissions (2)

• android.permission.VIBRATE
– allow to activate vibrate mode (low-level control possible)

• android.permission.READ_CONTACTS
• android.permission.WRITE_CONTACTS
– allow to read and write contact information

• android.permission.SET_WALLPAPER
– allow to set wallpaper on home screen

• android.permission.ACCESS_COARSE_LOCATION
– access GSM based localization data (~ 100m accuracy)

• android.permission.ACCESS_FINE_LOCATION
– access GPS & WLAN-based localization data (~ 5-10m

accuracy, might take some time to become available)

© 2012
alex@seewald.at
www.seewald.at

App Development 101

Most important permissions (3)

• android.permission.GET_TASKS
– allow accessing information about running tasks

• android.permission.CALL_PHONE
• android.permission.CALL_PRIVILEGED
– allow to initiate calls without user interaction
– Privileged: also call emergency numbers w/o user interact.

• android.permission.EXPAND_STATUS_BAR
– allow to expand and contract the status bar

• com.android.vending.BILLING
– allow in-app billing. MUST BE SET ON FIRST UPLOAD!

© 2012
alex@seewald.at
www.seewald.at

App Development 101

Most important permissions (4)

• android.permission.SEND_SMS
• android.permission.RECEIVE_SMS
– allow to send and receive SMS

• android.permission.NFC
– allow to use Near-Field-Communcations (NFC)

• android.permission.ACCESS_WIFI_STATE
– allow to access information on wifi networks

• android.permission.BLUETOOTH
– allow to connect to already paired bluetooth devices

• android.permission.BLUETOOTH_ADMIN
– allow to discover, pair & onnect to any bluetooth device

© 2012
alex@seewald.at
www.seewald.at

App Development 101

Most important permissions (5)

• android.permission.WRITE_SETTINGS
• android.permission.WRITE_SECURE_SETTINGS
– allow to write (secure) system settings

• android.permission.READ_LOGS
– allow to read all system logs (needed for own crash report)

• android.permission.SET_TIME
– allow to set time (sadly only for system apps)

© 2012
alex@seewald.at
www.seewald.at

App Development 101

Screen sizes
• Not a feature nor a permission: <supports-screens ...>
• Large variety of screen sizes (small, normal, large, xlarge) and

densities (l/m/h/xhdpi ~ pixel density per inch) are possible
• Need to explicitly declare which sizes are supported!

(otherwise app is run in compatibility mode and badly scaled)

• Density- & Screen size independence can be achieved...
– with layouts using density-independent measures (e.g. dp)
– defining different layout for screen sizes or densities
– manually scaling bitmap resources
– providing different bitmap resources for different densities

• Icecream Sandwich (4.0) offers new options to manage
screen sizes and densities.

http://developer.android.com/guide/practices/screens_support.html

http://developer.android.com/guide/practices/screens_support.html

© 2012
alex@seewald.at
www.seewald.at

App Development 101

• Features, Permissions & Screen sizes determine how many
Android devices will see your app in their Google Play store.

• For debug builds, market filtering via features is irrelevant.
(insufficient permissions will still crash your app) Make sure
you test if the app appears on your test phones after upload.

• App must run well on current and last year's Android phones.
You can never have enough test phones.

• Fixing bugs as fast as possible is essential for good ratings.
However, Google's crash report is not very informative. The
ACRA framework is useful to deliver your own crash report.
http://acra.ch/

http://acra.ch/

© 2012
alex@seewald.at
www.seewald.at

© 2012
alex@seewald.at
www.seewald.at

Alexander K. Seewald

Development for Android Devices
App Development 101

Layouts, Controls, and Lifecycles

© 2012
alex@seewald.at
www.seewald.at

App Development 101

Layout
• Simple XML format to specify layout of application
• Actual controls are embedded into *Layouts that take care of

size and positioning.
<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 android:orientation="vertical" >

 <TextView

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:text="@string/hello" />

</LinearLayout>

© 2012
alex@seewald.at
www.seewald.at

App Development 101

Attributes common to all layouts
• android:layout_width
• android:layout_height
– controls width & height of the layout object
– Common value: fill_parent = as large as parent object (root

= as large as screen); wrap_content = only as large as
necessary after displaying children)

• android:gravity
– placement of child objects when space remains
– top, bottom, left, right, center, ...

• android:id
– unique id for this layout (usually @+id/[unique name])

• android:visibility
– gone (not visible & not part of layout), visible, invisible

© 2012
alex@seewald.at
www.seewald.at

App Development 101

LinearLayout
• Display children in single column (android:orientation="vertical")

or row (default, android:orientation="horizontal")

RelativeLayout
• children are placed in reference to their siblings
• android:layout_below
• android:layout_above
• android:layout_toRightOf
• android:layout_toLeftOf
....
• Might be useful for very complex layouts

© 2012
alex@seewald.at
www.seewald.at

App Development 101

FrameLayout
• puts children on top of each other
• necessary for multi-layer views (e.g. transparent buttons on

top of camera preview or background images)

ScrollView
• Special kind of FrameLayout, scrolls contents (one child!)

TableLayout
• puts children in rows and columns ~ HTML <table>
• <TableRow ..>
– defines rows. Children of rows will be display as columns

• Children outside of rows will be displayed over all columns.

© 2012
alex@seewald.at
www.seewald.at

App Development 101

Content from ListAdapter, cannot be statically assigned
Good for showing large amounts of data (e.g. lists, images)

ListView
• 1D scrollable list of children
GridView
• 2D scrollable list of children

Fill via ListAdapter, e.g....
• static: string-array via ArrayAdapter.createFromResource()
• dynamic: write your own adapter subclass

All Layouts can be arbitrarily combined like any other control.

© 2012
alex@seewald.at
www.seewald.at

App Development 101

Controls
Android offers all usual controls: Textboxes, Listboxes, Text &
Image-Buttons, Images... We will only explain the most common.

Attributes common to all controls (widgets)
• All common layout attributes
• android:layout_weight
– higher weight implies more space for this control vs. its

siblings (sensible values: 0, 1, 2)
• android:background
– background color, shape or image (drawable)

© 2012
alex@seewald.at
www.seewald.at

App Development 101

TextView
Non-Input Text field (can still be changed from code)
• android:text
– initial text which is displayed

• android:textSize
– size of text, should be density-independent (e.g. 20sp =

scaled pixel units)
• android:textColor
– color of text, e.g. #FFFFFFFF, named color (white,

yellow, ..) or ref. to color drawable (@drawable/seso)

• android:typeface
– monospace, serif, ...

• android:textStyle
– bold, italics, ...

Many other attributes, check documentation!

© 2012
alex@seewald.at
www.seewald.at

App Development 101

EditText
Input Text field. Same attributes as TextView.

Button
Text button. Same attributes as TextView plus...
• android:label
– initial button text (don't use android:text !)

CheckBox
Special button that can be checked or unchecked.

© 2012
alex@seewald.at
www.seewald.at

App Development 101

RadioButton
Special button that implements mutual-exclusion.
• Must be grouped within RadioGroup
• Only one RadioButton within RadioGroup can be checked
• All options are visible at one glance

Spinner
• Basically a drop-down listbox
• Must be filled via SpinnerAdapter ~ ListAdapter

© 2012
alex@seewald.at
www.seewald.at

App Development 101

ToggleButton
• android:textOn
• android:textOff
– shows different text if on or off, click to toggle

• otherwise just like CheckBox

ImageView
Showing a seldom changing image
• android:src
– initial image (must be a drawable)

• android:scaleType
– how is image scaled? (center, fitXY, ...)

© 2012
alex@seewald.at
www.seewald.at

App Development 101

ImageButton
Image button. Same attributes as ImageView.
• android:src
– XML drawable w/ different images for button states, e.g.

<?xml version="1.0" encoding="utf-8"?>

 <selector xmlns:android="http://schemas.android.com/apk/res/android">

 <item android:state_pressed="true"

 android:drawable="@drawable/btn_news_sel" />

 <item android:state_focused="true"

 android:drawable="@drawable/btn_news_sel" />

 <item android:drawable="@drawable/btn_news_normal" />

</selector>

© 2012
alex@seewald.at
www.seewald.at

App Development 101

SurfaceView
For fast-moving images and camera previews
• Much faster rendering than ImageViews & normal views
• Can be drawn on via background threads (normal views throw

an Exception when doing this, need RunOnUiThread())
• Not necessary to use main user interface thread for drawing

Tricky to have two SurfaceViews in one FrameLayout (e.g.
camera preview and OpenGL alpha surface)
• first OpenGL alpha surface (with alpha channel & "holes")
• then camera preview
Even in Android 4.0 (very seldom) combined in wrong order!
Find the (non-fixable) bug in wooden easter rattle!

© 2012
alex@seewald.at
www.seewald.at

App Development 101

Understanding Android application directory structure (1)
• Essential

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.SeewaldSolutions.HelloWorld"

 android:versionCode="1"

 android:versionName="1.0" >

 <uses-sdk android:minSdkVersion="10" />

 <application

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name" >

 <activity

 android:name=".HelloWorldActivity"

 android:label="@string/app_name" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

Put permissions, features &
screen sizes here like this:
<uses-permission android:name="perm.." />

<uses-feature android:name="feature:.."
android:required=["true"|"false"] />

<supports-screens android:resizeable=
["true"|"false"] android:(small|normal|large|
xlarge)Screens=["true"|"false"] ... />

© 2012
alex@seewald.at
www.seewald.at

App Development 101

Understanding Android application directory structure (2)
• Essential

src/ - contains all source code
(at least the activity mentioned in AndroidManifest.xml)

 └── com

 └── SeewaldSolutions

 └── HelloWorld

 └── HelloWorldActivity.java:

package com.SeewaldSolutions.HelloWorld;

import android.app.Activity;

import android.os.Bundle;

public class HelloWorldActivity extends Activity {

 /** Called when the activity is first created. */

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 }

}

Displays XML layout
Can also create
everything with code.

© 2012
alex@seewald.at
www.seewald.at

App Development 101

Understanding Android application directory structure (3)
• Essential

res/ - contains all string, image and xml resources.
Resolutions not found will be interpolated.
├── drawable-hdpi / ..-ldpi / ..-mdpi / ..-xhdpi

│ └── ic_launcher.png

├── layout

│ └── main.xml:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 android:orientation="vertical" >

 <TextView

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:text="@string/hello" />

</LinearLayout>

│

└── menu

 └── menu.xml

App icon in all resolutions
 36x36 (ldpi), 48x48 (mdpi)
 72x72 (hdpi), 96x96 (xhdpi)
XML Layout w/ Textview

XML menu resources (optional)
Load like this:
@Override
public boolean onCreateOptionsMenu(Menu menu) {
 super.onCreateOptionsMenu(menu);

 MenuInflater inflater = getMenuInflater();
 inflater.inflate(R.menu.menu, menu);

 return true;
}

© 2012
alex@seewald.at
www.seewald.at

App Development 101

Understanding Android application directory structure (4)
• Essential

res/ - (continued)
└── values

 └── strings.xml

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string name="hello">Hello World, HelloWorldActivity!</string>

 <string name="app_name">HelloWorld</string>

</resources>

└── raw

Use resources in XML & code
<android:text="@string/hello" /><android:label="@string/app_name" />

<android:icon="@drawable/ic_launcher" />

String S = getString(R.string.hello); S = getString(R.string.app_name);

Drawable D = getResources().getDrawable(R.drawable.ic_launcher);

Automatically chooses the language for string resources, and
resolution for drawable resources when running on device.

XML string resources
/values = default language
/values-[languageCode] =
other languages(de,en,fr,..)

Must have same entries in
all languages.

"Raw" resources, open with:
InputStream ins = getResources().openRawResource(R.raw.file);

© 2012
alex@seewald.at
www.seewald.at

App Development 101

Understanding Android application directory structure (5)
• Optional

assets/ - alternative way to store any resources (no res. ID)
• res/drawable-*/* (all except drawable-nodpi) is scaled on each

viewing - small memory leak, unfixed, ~10x restart kills most
apps. Drawable memory for resources restricted. Solved by
using assets and loading resources ourselves.

• Cannot be used in XML, just in Code:
AssetManager as = getAssets(); InputStream i = as.open("test.txt");

Bitmap bitmap = BitmapFactory.decodeStream(

 new BufferedInputStream(assets.open("drawable/test.jpg"))

);

Drawable d = new BitmapDrawable(bitmap);

d.setBounds(0,0,d.getIntrinsicWidth(),d.getIntrinsicHeight());

• Need to release all asset-based bitmap drawables manually!
d.getBitmap().recycle(); d=null;

System.gc(); (optional)

© 2012
alex@seewald.at
www.seewald.at

App Development 101

Understanding Android application directory structure (6)
• Optional

project.properties - generated from AndroidManifest.xml, can
be used to switch on obfuscation via proguard

proguard-project.txt - proguard settings

jni/ - contains C/C++ code (compiled using Android NDK), can
be set up to automatically compile together with SDK toolchain

• Internal, can be deleted (in case of compilation problems)
bin/ - final apk files and intermediate compilation
gen/ - resource ids and other generated code

© 2012
alex@seewald.at
www.seewald.at

App Development 101

Toolchain (1)
• Android toolchain is based on the Javac build tool Apache Ant
• Simple command line interface (used by ADT plugin)
ant clean, ant build, ant install ...

• Java source plus generated code (resource IDs, external
libraries, etc..) is compiled into Java bytecode and put into a
simple jar (~ zip) file.

• Other resources are added right after the code. Direct
readonly access just by computing the right pointer (done
internally). This also allows to put apps into read-only memory.

© 2012
alex@seewald.at
www.seewald.at

App Development 101

Toolchain (2)
• The whole package (apk file) is public-key signed by one of...
– Debug key: can be put on any device if install of non-

market applications is allowed (otherwise fails). No feature
checking vs. device! Can install any app anywhere.
To install this app on a device, you can...
• send it via EMail as attachment
• put it on a sdcard or on the device, start with file manager

(e.g. Linda Manager)
• switch on USB-Debugging and use SDK's adb tool (most

convenient): adb install [-r] bin/debug-app.apk

– Release key: available only to developers, part of Market
account. Can upload apk to the Market via webinterface.
Will be available in Market after short delay. Market filtering
in place - only devices with the right features will see app!

© 2012
alex@seewald.at
www.seewald.at

App Development 101

Toolchain (3)
• On the device, a modified java just-in-time engine interprets

the Java byte code (= Dalvik).

• Newer devices interpret byte code faster and more efficiently.

• Garbage collection has also seen major improvement from
Android 1.0 to 1.5 to 2.1 to 2.3.3.

• Now very efficient also for complex code!

© 2012
alex@seewald.at
www.seewald.at

App Development 101

Activity
• The most important class of your app - the one essential!

• Can be killed by Android anytime...
Need to restore settings otherwise user will be confused!

• When to save and when to restore? Lifecycle!

© 2012
alex@seewald.at
www.seewald.at

App Development 101

Only one safe place!
• save in onPause()
• restore in onResume()

Temporarily save settings
by onSaveInstanceState()
&onRestoreInstanceState()
Will be destroyed when
app is finally killed.

Permanently save settings
using SharedPreferences.
Will remain when
restarting app.

© 2012
alex@seewald.at
www.seewald.at

App Development 101

Temporarily save settings using onSave/RestoreInstanceState()
• One argument: Bundle savedInstanceState
• Save named values via putInt/Float/Boolean/String()
savedInstanceState.putString("v",value);
savedInstanceState.putInt("i",10);

• Restore named values via getInt/Float/Boolean/String()
String v=savedInstanceState.getString("v");
int i = savedInstanceState.getInt("i");

• Internally used by Android as well, don't forget to call
super.onSave/RestoreInstanceState() before returning!

© 2012
alex@seewald.at
www.seewald.at

App Development 101

Permanently save settings using SharedPreferences
• Save in onPause()
• SharedPreferences.Editor = same put functions as Bundle.
SharedPreferences sp = getPreferences(MODE_PRIVATE);

SharedPreferences.Editor se = sp.edit();

se.putString("v",value);

se.putInt("i",10);

se.commit();

^^^^^^^^^^ Necessary to actually save the changed data!

• Restore in onResume().
• SharedPreferences = same get functions as Bundle
SharedPreferences sp = getPreferences(MODE_PRIVATE);

String v=sp.getString("v","");

int i = sp.getInt("i");

(no sp.edit() / editor necessary)

© 2012
alex@seewald.at
www.seewald.at

App Development 101

Making a control accessible from code
• add android:id="@+id/any_name_you_want" to XML

definition of the control (if not already there)
• in java code, use e.g. for an EditText control
EditText et = (EditText) findViewById(R.id.any_name_you_want);

Saving/Restoring text from TextView & EditText
String saved = (et.getText()+"");

et.setText(saved);

© 2012
alex@seewald.at
www.seewald.at

© 2012
alex@seewald.at
www.seewald.at

Alexander K. Seewald

Development for Android Devices
App Development 101

Multitouch, Sensors and Hello World

© 2012
alex@seewald.at
www.seewald.at

App Development 101

Processing touch events (1)
• Have to subclass a View (e.g. ImageView)
• To process multi-touch events in order, work like this!
public boolean onTouchEvent(MotionEvent ev) {

 final int historySize = ev.getHistorySize();

 final int pointerCount = ev.getPointerCount();

 for (int h = 0; h < historySize; h++) {

 System.out.printf("At time %d:", ev.getHistoricalEventTime(h));

 for (int p = 0; p < pointerCount; p++) {

 System.out.printf(" pointer %d: (%f,%f)",ev.getPointerId(p),
ev.getHistoricalX(p, h), ev.getHistoricalY(p, h));

 }

 }

 System.out.printf("At time %d:", ev.getEventTime());

 for (int p = 0; p < pointerCount; p++) {

 System.out.printf(" pointer %d: (%f,%f)",ev.getPointerId(p),
ev.getX(p), ev.getY(p));

 }

 System.out.printf(" action %d",ev.getAction());

}

© 2012
alex@seewald.at
www.seewald.at

App Development 101

Processing touch events (2)
• ev.getPointerId(p)
– gives a unique pointer id for touch number #p
– unique as long as touch is not removed
– assigned the first time this pointer goes down

• ev.getAction()
– ACTION_DOWN when first pointer goes down
– ACTION_POINTER_DOWN - pointers being added (plus

shifted pointer index, use getActionMasked()/Index())
– ACTION_POINTER_UP - pointers being removed (plus

shifted pointer index, use getActionMasked()/Index())
– ACTION_MOVE - pointers move w/o going up/down
– ACTION_UP - last pointer goes up. Interpret gesture now!
– ACTION_CANCEL - gesture canceled, do not interpret!

© 2012
alex@seewald.at
www.seewald.at

App Development 101

Processing touch events (3)
Simple single/multitouch processing (drag & pinch/zoom)
• Store number of pointers down (maximum) and the positions

of the first two pointers at beginning b0,b1 (when they first
appear) and in each ACTION_MOVE c0, c1 (b0,b1,c0,c1 are
2D positions)

In ACTION_MOVE:
• If max.number of pointers down = 1: single touch, use first

position b0 to current position c0 as drag gesture
• If max. number of pointers down = 2: multi-touch, use ratio of

distance(b0,b1) to distance(c0,c1) to pinch/zoom
In ACTION_UP: make sure changes are made permanent (no
jumps when removing all pointers)

© 2012
alex@seewald.at
www.seewald.at

App Development 101

Drawing on ImageView
Only possible for subclassed image view
• override protected void onDraw(Canvas canvas)

• call super.onDraw() in first line
• use Canvas draw functions:
Canvas.drawLines(), drawCircles(), ...
http://developer.android.com/reference/android/graphics/Canvas.html

Subclassed views are referenced in XML layout as full class
(e.g. com.SeewaldSolutions.HelloWorld.MyImageView)

http://developer.android.com/reference/android/graphics/Canvas.html

© 2012
alex@seewald.at
www.seewald.at

App Development 101

Processing sensor data (1)
• Must implement interface SensorEventListener

• Register a listener like this (preferably onCreate())
SensorManager sm = (SensorManager)(this.getContext().
getSystemService(Context.SENSOR_SERVICE));

List<Sensor> l = sm.getSensorList(Sensor.TYPE_GRAVITY);

if (l.size()>0) { Sensor mSensor = (Sensor)(l.get(0));

 sm.registerListener(this,mSensor,SensorManager.SENSOR_DELAY_GAME); }

• Can register an arbitrary number of sensors to same routine.
Need to distinguish which sensor sent data!

• Sensor update speed depends on 3rd par. in registerListener()

© 2012
alex@seewald.at
www.seewald.at

App Development 101

Processing sensor data (2)

• public void onSensorChanged(SensorEvent event)
– Called only when sensor values change
– int accuracy - accuracy of event (mostly useless)
– Sensor sensor - sensor who was responsible for this event
– long timestamp - time in nanoseconds for this event
– float event.values[] - values, depends on sensor type

• When accuracy of sensor changes, this routine is called.
Part of SensorEventListener interface, must be implemented
public void onAccuracyChanged(Sensor sensor, int accuracy)

© 2012
alex@seewald.at
www.seewald.at

App Development 101

Getting a camera preview (1)
Camera preview needs a subclassed SurfaceView (extends ..)
that at least implements SurfaceHolder.Callback.
New private member variables for Holder & Camera:
SurfaceHolder mHolder; Camera mCamera;
New private member variables for camera preview size and
surface size (may be different):
int mWidth, mHeight, mSFWidth, mSFHeight;

Set up holder in constructor:
mHolder = getHolder();

mHolder.addCallback(this);

mHolder.setType(SurfaceHolder.SURFACE_TYPE_PUSH_BUFFERS);

© 2012
alex@seewald.at
www.seewald.at

App Development 101

Getting a camera preview (2)

Open camera in surfaceCreated():
 public void surfaceCreated(SurfaceHolder holder) {

 mCamera = Camera.open();

 mHolder = holder;

 mCamera.setPreviewDisplay(mHolder);

 }

Close & release camera in surfaceDestroyed():
 public void surfaceDestroyed(SurfaceHolder holder) {

 if (mCamera!=null) {

 mCamera.stopPreview();

 mCamera.release();

 mCamera=null;

 }

 }

© 2012
alex@seewald.at
www.seewald.at

App Development 101

Getting a camera preview (3)
Start preview in surfaceChanged()
public void surfaceChanged(SurfaceHolder h, int format, int w, int h) {

 mSFWidth=w; mSFHeight=h; mWidth=w; mHeight=h;

 Camera.Parameters p = mCamera.getParameters();

 p.setPreviewFormat(PixelFormat.YCbCr_420_SP);

 p.setPreviewSize(w,h);

 mCamera.setParameters(p);

 mCamera.startPreview();

}

May not always work, may be slow on older devices with large
screen; fails on some buggy devices... better to compute best
preview size that fits to screen (possible upscaled)!

© 2012
alex@seewald.at
www.seewald.at

App Development 101

Getting a camera preview (4)
Given w,h - find best fit preview size!
Camera.Parameters p = mCamera.getParameters();

List<Camera.Size> ls = p.getSupportedPreviewSizes();

Camera.Size bAR = null; Camera.Size bOV = null;

for (int i=0; i<ls.size(); i++) {

 if (w*ls.get(i).height == h*ls.get(i).width) { // same aspect ratio

 if (bAR==null || Math.abs(w*h-ls.get(i).height*ls.get(i).width)
<Math.abs(w*h-bAR.width*bAR.height)) { bAR=ls.get(i); }

 } else if (bOV==null || Math.abs(w*h-ls.get(i).height*ls.get(i).width)
<Math.abs(w*h-bOV.width*bOV.height)) { bOV=ls.get(i); }

 }

}

if (bAR!=null && (bOV==null || Math.abs(w*h-bAR.width*bAR.height)
<1.5*Math.abs(w*h-bOV.width*bOV.height))) {

 w=bAR.width; h=bAR.height; // use best aspect ratio preview

} else {

 w=bOV.width; h=bOV.height; // use best overlay preview

}

© 2012
alex@seewald.at
www.seewald.at

App Development 101

Install Android SDK!

• Choose the right version for your operating system
http://developer.android.com/sdk/index.html

• Start SDK Manager and install recommended packages
(Win: SDKManager.exe; MacOS/Linux: tools/android sdk)

• Ensure SDK Manager has Android 2.3.3 SDK (Gingerbread,
API Level 10) & SDK Tools Rev. 20.0.3 installed. We will work
with 2.3.3 SDK (targetSdk=10) throughout.

http://developer.android.com/sdk/index.html

© 2012
alex@seewald.at
www.seewald.at

App Development 101

Install Eclipse for Java! (preferred IDE)

• At least version 3.6.2 (Helios)

• Linux: can probably install from default repository
• MacOS/Windows: install newest version from homepage

http://www.eclipse.org/downloads/

• Use AVD manager to create a SDK level 10 emulator device
with WVGA800 screen size.

http://www.eclipse.org/downloads/

© 2012
alex@seewald.at
www.seewald.at

App Development 101

Install ADT Plugin for Eclipse!

• Install instructions:
http://developer.android.com/sdk/installing/installing-adt.html

• Possible to use another IDE or no IDE at all. Toolchain is also
available as command line using ant.

http://developer.android.com/sdk/installing/installing-adt.html

© 2012
alex@seewald.at
www.seewald.at

App Development 101

Creating our first app using Eclipse
• Click on "New Android App" in toolbar

(if it's not there, need to install ADT plugin and/or install SDK)
• Build SDK: is used to compile the app, >= Min.Req.SDK
• Minimum Required SDK: what API level the app requires at

least. If you have Build SDK > Minimum Required SDK, need
to check whether features are available using Java reflection.

• App name: Needs to be unique on whole market
Usually: com.[CompanyName].[AppName] (all ASCII)

• No test project, no copying from sample code

This will create the Android project directories plus some
initial code.

© 2012
alex@seewald.at
www.seewald.at

App Development 101

Hello World - Our First App
Install the app on your emulator! Start it and see if it works!

• Debugging
– ADT plugin LogCat view shows the recent log entries

Check the ... caused by (first line of error, scroll up!)
– From command line: run adb logcat
– System.out.println will output to log as well
– Only when encountering a hard reset will you lose logs

(can happen e.g. with Camera preview surfaces)
– All this will work with emulator & device (make sure not

both of them are running at the same time!)

© 2012
alex@seewald.at
www.seewald.at

App Development 101

Hello World - Our First App

Exercise 1: Make this app multi-language (add German!)

© 2012
alex@seewald.at
www.seewald.at

App Development 101

Hello World - Our First App

Exercise 2: Add your own app logo instead of the default
one. Leave the old one in, give the new logo another name.

© 2012
alex@seewald.at
www.seewald.at

App Development 101

Hello World - Our First App

Exercise 3: Add one arbitrary hardware feature and one
arbitrary permission to your app, see what happens when
running it!

© 2012
alex@seewald.at
www.seewald.at

App Development 101

Hello World - Our First App

Exercise 4: Change all application text by modifying
res/values/strings.xml and res/values-de/strings.xml . Is
there something you cannot change?

© 2012
alex@seewald.at
www.seewald.at

App Development 101

Hello World - Our First App

Exercise 5: Add EditText in HelloWorld layout/main.xml,
then save/restore its contents using...
1) temporary method (onSave/RestoreInstanceState())
2) permanent method (SharedPreferences in onPause/
onResume)
Also set TextSize to 20 sp for original text and EditText!

Switch away from app (e.g. home button), back again, etc...
see which method does what you expect it to do!

© 2012
alex@seewald.at
www.seewald.at

App Development 101

Hello World - Our First App

Exercise 6: Add nine TextViews below the existing one. Use
these to output sensor values from TYPE_GRAVITY (first
three), TYPE_LINEAR_ACCELERATION (middle three) and
TYPE_ROTATION (last three). This will only work on an
actual device, so stop the emulator and connect your
device.

Make sure Settings - Applications - Development options -
USB Debug is switched on. Then installing on device via
ADT plugin should work.

Tell us your experiences with the values from these
sensors! Which are reliable, which are not and why?

© 2012
alex@seewald.at
www.seewald.at

App Development 101

Hello World - Our First App

Exercise 7: Comment out all text views in XML layout, add
one subclassed image view and implement onTouch() there.
1) use the provided onTouch() code from slide, see if you
get touch events and if you understand them
2) visualize touches by overriding onDraw() - e.g. each
pointer as drawCircle(), lines between any two pointers as
drawLines()

3) (optional) draw anything on Canvas, scale/drag using
single & multitouch gestures.

© 2012
alex@seewald.at
www.seewald.at

© 2012
alex@seewald.at
www.seewald.at

Alexander K. Seewald

Development for Android Devices
App Development 101

Team Work

© 2012
alex@seewald.at
www.seewald.at

App Development 101

Teamwork!
• Groups of 1-3 people
• Implement any app you want, provided it is...
– feasible to finish within 1.5 days
– uses (mostly) what we have done

• Ideas
– Presentation app using single touch moves to go left/right,

multitouch for pinch/zoom and rotate gestures (use sample
bitmaps for slides)

– Virtual horizon: Visualize the virtual horizon using output
from appropriate sensors (optional) over camera preview.

– Labyrinth: Implement a simple labyrinth using only Canvas
draw functions. Ball should be movable using appropriate
sensors following gravity (~ normal labyrinth game)

© 2012
alex@seewald.at
www.seewald.at

App Development 101

You have until tomorrow afternoon to finish your app.

I will be available for questions throughout!

© 2012
alex@seewald.at
www.seewald.at

© 2012
alex@seewald.at
www.seewald.at

Alexander K. Seewald

Development for Android Devices

Team Presentations

© 2012
alex@seewald.at
www.seewald.at

Team Presentations

• Every group distributes their app to all other groups.

• Install each app on each device

• Short presentation from each group about their app

• Together we will test all apps and see if we can find bugs!

• Afterwards we will discuss our experiences

© 2012
alex@seewald.at
www.seewald.at

© 2012
alex@seewald.at
www.seewald.at

Alexander K. Seewald

Development for Android Devices

Outlook

© 2012
alex@seewald.at
www.seewald.at

What can be expected in the future?

More Of The Same
• Faster devices: more computing power, faster internet access
• Larger devices: more internal and external memory, larger

screens, higher-resolution cameras
• Special purpose devices: adapted to specific users' needs,

e.g. for old people = simpler interface with larger buttons

Somewhat Different
• Flexible displays (possibly whole devices): researched for 10+

years, few prototypes. Should be available in 3-5 years
• Alternative displays (e-Ink ~ Kindle, other e-book readers)
– need special interfaces because screen refresh ~ 1-2s

• Will we always have to work with capacitive touchscreens?
Alternative input/output devices!

© 2012
alex@seewald.at
www.seewald.at

Alternative Output Devices (1)

Project Glass (Google)

• Virtual display & camera integrated into a glasses-like frame
• Not suitable for Augmented Reality
– Small screen (~ 19" at 2m distance), Only one eye
– Far less than needed for full immersion

• Not stand-alone usable: no sensible input! Controlled e.g. by
smartphone (so you have to lug two devices around...)

• Not a new idea at all!

© 2012
alex@seewald.at
www.seewald.at

Alternative Output Devices (2)

Similar devices have been available for
decades.

Thad Starner, Wearable Comp. Pioneer =
• This device was offered to me in 1999 at

3000 CHF at a conference (resolution:
320x240, 16 colors, no camera ;-)

Steve Mann, the grandfather of Wearable
Computing (Thad's doctoral advisor) =
• EyeTap: Several generations of prototype

full immersion augmented reality glasses
(display + camera), going back to 1981.

Now this I'd like to see in shops!

© 2012
alex@seewald.at
www.seewald.at

Alternative Input Devices

Output devices better than Project Glass are already
available, how about input devices?

Current Inputs
• Chorded (one hand) keyboard & mouse (e.g. Twiddler2.1)
– Must be specifically learned (moderate effort)
– Also available wireless via bluetooth

• Smartphone/Tablet via multitouchscreen, integrated keyboard
• Speech recognition (very susceptible to environment noise)

Future Inputs
• Head movements, Eye Tracking, Hard movements
• EEG analysis (tricky)
• Robust speech recognition

© 2012
alex@seewald.at
www.seewald.at

Alternative Hardware Devices (1)

Android runs on other devices as well....

Raspberry Pi
• cheap (~ 25-35US$) ARM device
• low power (~ 75-125mA)
• small (large matchbox)
• can run Android 4.0!

E-book Reader Devices
• Barnes & Nooble Nook *
• enTourage eDGe
• Spring Design Alex eReader
• PocketBook eReader IQ 701

© 2012
alex@seewald.at
www.seewald.at

Alternative Hardware Devices (2)

Netbooks
• Acer Aspire One (dual-boot with WinXP/Win7)
• Augen GenBook 108
• Toshiba AC100

Smartwatch
• Motorola MOTOACTV (GPS Fitness tracker)
• Blue Sky I'm Watch
• Sony SmartWatch
– both are just input/output devices for a smartphone...
– the first smart watch, however, was...

© 2012
alex@seewald.at
www.seewald.at

Alternative Hardware Devices (3)

Timex Datalink 150
Available 1994 - 2010

Features
• Calendar, count-down timer, tasks, two time

zones, notes; write your own wristapps via SDK
• 64K ROM, 2K EEPROM, very limited memory
• Import from MS Schedule+ via "blinking lines"
• Completely autonomous
• 3 year runtime out of a single battery

However: No possibility to input calendar entries; tasks could
only be marked "done" and otherwise not changed (five buttons
would have been enough for simple chorded keyboard ;-)

© 2012
alex@seewald.at
www.seewald.at

Challenges

Full immersion augmented Reality (~ EyeTap)
• Realtime (<12ms) alignment of head position with environment

overlay (otherwise "motion sickness")
• Overlay must not distract overly from environment (otherwise

"lose one eye" effect)
• Overlay may need 3D data on surrounding environment. Very

hard even using stereo cameras! 3D cameras ~ Kinect, Xtion?
(they work well but need 12W power - too much for mobile!)

• Analysis of image data from camera might be useful for head
position estimate but takes too much computing power.
Currently not feasible. Best: Integrate 3-axis gyroscope &
acceleration sensor into headset!

• Would be very interesting to write apps for this!

