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Abstract. The compelling story of self-improving machines which become ex-
ponentially smarter up to inconceivable intelligence has inspired some of the best
science fiction literature [1–3], but is also taken seriously by many researchers.
This story is however based on empirical observations of seemingly exponen-
tial processes such as Moore’s law in the semiconductor industry, and contains
multiple fallacies concerning self-improvement of intelligent systems (including
humans), which upon close look are implausible. Deep Learning has been her-
alded as a major step in this direction, however a closer look again shows many
open issues with this approach, leading us to conclude that we deciphered only
a small part of one method which nervous systems may use to create intelligent
behaviour; that seemingly simple tasks like image classification and segmenta-
tion are still AI-complete; and that true Artificial General Intelligence (AGI) still
lies at least several centuries in the future. But even an AGI would not be able to
exponentially self-improve without further advances. These fallacies abound in
science fiction literature as well as in scientific papers, and we will illustrate our
analysis with appropriate examples.
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1 INTRODUCTION

The technological singularity, or Intelligence Explosion Hypothesis (IEH), is a theoret-
ical concept where exponential improvements in intelligence (e.g. a factor of 2 every
year) yield corresponding speedups of the underlying system where these speedups
were obtained, making the next exponential improvement step by the same system ex-
ponentially faster (e.g. a factor of 2 every 6 months, every 3 months, every 1.5 months,
...), thus yielding exponential intelligence improvement steps in exponentially shorter
time, rapidly reaching a point where the total intelligence of such a system reaches a
mathematical singularity (e.g. 1

0 ). Self-recursive improvement is thus an essential fea-
ture of this concept. The effect is in each case accelerated technological change, leading
to a rapid transition to a state where the human condition would be challenged, and the
future would be unpredictable.

The concept is not new. Already in the 1950ies, John von Neumann [4] claimed that
accelerating technological progress was approaching a mathematical singularity beyond
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which human affairs would radically change.1 Good [5] postulated an intelligence ex-
plosion by recursive self-improvement of a machine intelligence, which he called an
ultraintelligent machine. Lem [6] published a science fiction novel about a military
AI that recursively increases its intelligence repeatedly, rapidly approaching just such
a singularity. Two years later, Vinge [7] contended that a rapidly self-improving AI
would quickly approach a technological singularity beyond which reality would be un-
predictable, and later elaborated on this in [8], where he predicted the singularity to
happen between 2005 and 2030. Solomonff [9] described six AI milestones he believed
would lead to AI approaching practically infinite intelligence in finite time, assuming
again a self-recursive improvement (in the form of: having computers makes it cheaper
to create newer, more powerful computers) and a constant expenditure on exponen-
tially decreasing hardware costs. Moravec [10] predicted that in 2038 – due to Moore’s
law and similar trends – robotic reasoning and behavior would exceed that of humans.
In 1990, examining evidence outside robotics, Kurzweil [11, 12] came to similar con-
clusions and put the singularity at around 2045. Yudkowsky [13] differentiates three
different singularity schools:

1. Accelerating Change: Technological change follows (often exponential or super-
exponential) smooth curves, so the arrival of new technologies – or when they cross
key thresholds (such as Artificial General Intelligence) – can be predicted with
reasonable precision.

2. Event Horizon: To predict a superintelligence’s plans, you need to be at least as
smart yourself. Thus the future after the creation of superintelligence is completely
unpredictable. This is most similar to the definition by Vinge in [8].

3. Intelligence Explosion: The positive self-improvement feedback cycle of intelli-
gence does not stop but triggers further and ever faster intelligence improvements
of similar magnitude and creates a superintelligence before it hits physical limits.

He notes that their claims contradict one another: for example, if we use Moore’s law
to predict computing performance in 2099, we contradict both Event Horizon (which
state that we cannot know the future after superintelligences) and Intelligence Explosion
(because progress will run faster once smarter-than-human minds and nanotechnology
are integrated into the process). However these comprehensive discussions do not at all
indicate that any of these schools describe even remotely plausible scenarios.

Sandberg [14] compares models of the technological singularity and concludes that
mathematical models for growth exhibit at least exponential growth as this is the sig-
nature of linear self-coupling terms. He adds that if efficiences of scale exist, superex-
ponential growth or finite time singularities appear to be generic. He notes that mathe-
matical singularities are likely indicators for transitions to other domains of growth, or
that unmodeled factors will become relevant close to the point and are not meant to be
taken at face value. He also notes that the most solid finding is that even small increas-
ing returns in a growth model can produce radical growth, and that if mental capital
(embodied in humans, artificial intelligence or posthumans) becomes relatively cheaply
copyable, extremely rapid growth is likely to follow. Concluding, he notes that there is

1 This was at a time of excessive optimism in AI research, similar to the present (2021).
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a lack of models of how an intelligence explosion could occur and that available evi-
dence show that human experts are usually weak at long-term forecasting even without
apparent singularities.

There are two distinct ways such a singularity is presumed to happen:

1. Hard takeoff : Runaway intelligence, recursive speeding-up self-improvement in the
blink of an eye.

2. Soft takeoff : An exponential speedup similar what we have experienced due to
Moore’s law.

As we will see, a hard takeoff is extremely unlikely given the very strict requirements;
however even a soft takeoff over a reasonable timeframe of 10-20 years also seems
rather unlikely. A sufficiently slow soft takeoff taking several centuries would be undis-
tinguishable from the status quo and we will therefore not address it.

There are many issues with past work on this topic, so we will first only mention a
few of them: For example, above work mostly assumes that increases in research fund-
ing – one working example of a self-improving system – yield exponential increases
in research progress while these are actually sublinear [15]. This is also supported by
the finding of Hanson [16] who found that past progress in research is not perceived as
increasing over time by the researchers themselves. In fact, based on the much more re-
liable past rate of progress estimated by researchers themselves, Hanson [17] (p.61–63)
estimates at least two to four centuries until an Artificial General Intelligence – i.e. a
human-level AI – becomes available.

It is sometimes claimed (e.g. in [8]) that intelligence amplification in humans could
yield comparable results. However it seems obvious that the speedups necessary for a
runaway intelligence explosion are not applicable to biological nervous system since
the necessary self-improvement loop is not feasible for biological entities, at least at
ever decreasing temporal lengths. Therefore we do not address this topic here.

Lastly, it should be noted that from an evolutionary standpoint, our facility for ra-
tional human thought has not evolved for drawing valid and statistically accurate con-
clusions, but rather to impress and persuade other humans by telling compelling stories
[18]. So it does not come as a surprise that the singularity – a story of self-improving
machines with unlimited potential – has a wide range of proponents as well as detrac-
tors. Please bear this in mind for the following discussion.

2 SINGULARITY REQUIREMENTS

There are three key requirements for any kind of technological singularity.

1. Recursive self-improvement must be feasible, regardless of the intelligence level to
start with. It is not at all clear that recursive self-improvement is actually possible.
If we go from the most intelligent system known so far – humans – cognitive in-
trospection is a bad indicator of how things are actually implemented in our brains,
and can only barely inform improvements in intelligence. Systematic experiments
were and are still needed to determine good ways to improve mathematical abil-
ities, memory, and logic even temporarily [19]. General intelligence is practically
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not improvable.2 In machine learning after decades of research, there seem to be
no true examples of unsupervised self-learning systems that automatically improve
without explicit or implicit external feedback. In each case where machines have
seemingly improved themselves (e.g. speech recognition, faster CPUs and GPUs,
image classification and segmentation, self-driving cars, spam filtering, ... ), this
process was enabled by human ingenuity at exponentially increasing scales of ef-
fort and cost.

2. Recursive self-improvement must be feasible at a cost at most linear in the achieved
improvement. For example, to make a system twice as smart, we must incur at
most a linear cost O(x) with x corresponding to the initial smartness of the sys-
tem. So making a system x times smarter must be only x times as hard.3 Otherwise
the maximum achievable intelligence grows much more slowly, or even converges
asymptotically to a limit never to be exceeded – surely the opposite of a singular-
ity. However indications abound that it is actually much harder to make a system
smarter, on the order of O(x2) or even O(ex ). For example, increasing research
funding yields much less than linear increases in research progress [15], indicating
that costs are much more than linear w.r.t progress. In fact vulnerabilities such as
Meltdown and Spectre [22] clearly indicate that previous costs at least in computer
chip design have been underestimated in that they did not account for very subtle
significant errors in previous chip designs.

3. At a linear cost of recursive self-improvement, we would still have to have an addi-
tional exponential process to achieve the necessary speedup for a singularity with
hard take-off. For the soft take-off scenario the previous two requirements are suf-
ficient. For example, we could exponentially increase the available budget for such
a project, or a system twice as intelligent could only need half the cost to improve
by another factor of two.4 Another usual candidate is the exponentially increasing
number of transistors in microchips at shrinking costs due to Moore’s law. How-
ever this relies on 1) that is it possible to parallelize the recursive self-improvement
process to an arbitrary number of subprocesses which can all run in parallel, 2) for
the exponential process to hold at least until the earliest timepoint where the sin-
gularity can happen. Both assumptions are doubtful: 1) ignores all communication
costs between processors, but these also increase superlinear with the number of
processors5; and 2) relies heavily on Moore’s law which will hold only for another
one to two decades at most (see Section 3).

The most critical requirement is the second one: Achieving the singularity assumes
a sublinear effort for intelligence improvement. E.g. to achieve double intelligence, a
constant effort is needed regardless of the previous intelligence level. Even a slight
exponent on the effort will prevent a singularity from happening. Naam [23] has argued
against such a superexponential runoff. He has pointed out that we already see recursive

2 Stumpf [20] finds correlations of 0.89 to 0.96 for adults over a seven-year period.
3 [21] has produced a nice graph to visualize this.
4 I.e. exponentially sped-up self-improvement – to some extent a strong version of the second

requirement.
5 Unless we connect all pairs of processors together, which then quickly runs into problems of

available space as the number of connections is quadratic in the number of processors.
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self-improvement by superintelligences, such as corporations like Intel which utilize
the collective cognitive resources of tens of thousands of humans as well as millions of
older CPUs to design the next CPU generation, and have been doing this for decades.
However, this has not led to a hard takeoff; rather, it has led to a very soft takeoff in the
form of Moore’s law. Naam [21] further points out that the computational complexity
to create higher intelligence may be much greater than linear.

It may be argued that evolution on earth has been running just such an experiment at
recursive self-improvement for the last 3.5 billion years and has been relatively success-
ful, even creating several human-level intelligences from scratch, all but one of which
have already died out.6 From this we can infer that recursive self-improvement is possi-
ble over sufficiently long time spans at the level of species – not necessarily at individual
level. In fact the process used by evolution, Survival of the Fittest[25], is not reliant on
individual intelligence at all. Taking a close look at the many organisms (solutions) it
is clear that most of them are in an evolutionary dead-end and further optimization is
likely to be increasingly difficult (see e.g. [26], pp.104–105).

But although the biosphere contains approximately 16 million different species and
5 ∗ 1030 living cells and has been "running" for about 3.5 billion years, optimizing all
species in parallel, human-level intelligence appeared only relatively recently around 6
million years ago (i.e. after 99.83% of elapsed "runtime"). From this we may infer that
creating the higher levels of intelligence so essential for the singularity is exceedingly
hard, and generating them from scratch may be very costly.

It may also be argued that evolution does not optimize for intelligence as it may not
be a survival trait.7 However the one long-standing result compatible with this view –
that highly intelligent people have fewer children than less intelligent ones – has been
reevaluated by Parker [28] who found no such difference after reanalyzing earlier work,
and who speculated that sibling density – leading to less individual educational attention
and less monetary and educational resources – might also explain these differences.
Again we note that intelligence cannot be improved over the level obtained by nature
and early nurture influences and is remarkably stable in adults, however many effects
(nutritional, emotional, education, ..) can stunt intelligence below the level that could be
obtained under optimal conditions, so these results do not contradict the ones mentioned
earlier on intelligence being practically not improvable [20].

It is also sometimes claimed that the number of different ways to the singularity
(such as Artificial Intelligence, Intelligence Amplification, hive minds, and so on) in-
creases the likelihood of it to happen. However, this is a rather simplistic view. Notably,
if only one of above requirements cannot be met, the singularity will never happen.

Concluding, we find all three mentioned conditions to be implausible. Recursive
self-improvement is empirically only shown at species or population level, and may
not be feasible on the level of individual intelligences at all, as human intelligence – the

6 Unfortunately the extinct homonids seem to have been the more peaceful ones, e.g. Kwang
Hyun [24] states in his conclusion that the genetic basis for aggressiveness and hyperactiv-
ity originate with humans, and human interbreeding with Neanderthals led to more peaceful
behavior in their hybrid offspring. This is likely the reason why they are extinct.

7 Very entertaining argued for in [27] – but please consider last paragraph of Section 1 on the
human weakness for compelling stories.
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only known working example – is practically not improvable. There are also indications
from evolutionary biology that recursive-self improvement is very costly. Finally, the
additional exponential process needed to actually get to arbitrarily high intelligence
levels – Moore’s law is very often used here – merits a closer look as it is a central point
of quite a few singularity proponents.

3 MOORE’S LAW REVISITED

Moore’s law has often been cited and used in projections as a support for the impend-
ing technological singularity. Even when it is not directly referred to, Grace [29] notes
that software costs roughly track hardware costs in many domains, so estimates on such
progress – even when not directly referencing Moore’s law – still indirectly rely on its
exponential improvements. Tuomi [30] makes a very good case that the increasing num-
ber of transistors on chips confounds two different patterns; we added a third somewhat
obvious observation that may not be common knowledge.

1. In 1965, initially Moore’s law – then a empirically grounded hypothesis on the
future of semiconductor production technology – referenced minimum-cost chips,
i.e. those that could be most efficiently produced. However, ten years later in 1975
it was changed to reference maximum-complexity chips, i.e. at the limit of the
production technology, which changes both timing (higher values will tend to be
reported earlier) and the transistor count itself (which will also be higher, perhaps
beyond profitability).8

2. From about 1998, the chip industry started to put cache memory on its chips to
improve performance. This increases the transistor count dramatically with only
modest increases in design complexity, as cache memory units are relatively uni-
form and simple compared to other CPU units. This explanation also applies to
some extent to graphical processing units (GPUs) used extensively in Deep Learn-
ing. For example, the last DEC Alpha chip had 90% of the transistors correspond-
ing to cache memory [31] and the Intel DualCore Itanium-2 from 2006 had 96.28%
cache memory [32].

3. From about 2005, semiconductor manufacturers started to fill available die area
with multiple copies of chip units (cores) that are essentially identical, thus in-
creasing transistor count with only small increases in design complexity.

We cannot easily verify 1) but it was only at the beginning of Moore’s law and is no
longer relevant. However, we can with some effort confirm 2) and 3) by closely ana-
lyzing the processors with the highest transistor counts in each year from 1995 to 2020
(data from [31]). We manually determined transistor count, cache size and number of
cores for each processor. To reduce effort, we only analyzed one processor per year,
namely the one with the highest transistor count. Fig. 1 shows uncorrected transistor

8 Also, maximum-complexity chips sometimes had bad price/performance ratio and were hard
to sell, occasionally never coming to market at all.
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Fig. 1. Transistor counts between 1995 and 2020
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count, transistor count when removing approximate cache transistors9 (compensating
for effect 2), and the transistor count per core (compensating for effects 2 and 3). As
can be seen, cache contributed a large proportion of transistors between 2000 and 2005,
and its contribution has been shrinking since then. The number of transistors by core
shows only a very weak exponential growth and may even become asymptotic in the
near future. The doubling time for by-core transistor counts is already 3.84 years, al-
most twice the doubling time for uncorrected Moore’s law (of two years). The doubling
time for 1995-2007 in our period is 2.30 years, and for 2008-2020 this has increased to
2.97 years, so we see a slowdown in the by-core transistor counts. This is even more so
for the uncorrected transistor counts: here 1995-2007 has a doubling time of 1.36 years
– still near the Moore estimate10 – and 2008-2020 has a doubling time of 2.79 years,
almost twice that of the earlier interval.

9 We estimated seven transistors per bit, which was current in 1999 but may be down to four
transistors at present. However on an exponential scale a factor of two corresponds to a con-
stant shift and does not effect the rest of this analysis. Also our method ignores cache logic
and thus slightly underestimates the number of cache transistors, which can also be seen from
[32] (entry from 2006) where cache transistors are estimated at 1.5 billion by our method, but
are actually 1.656 billion out of 1.72 billion (96.28%). We had to use this ad-hoc method as
for most processors the number of cache transistors was never reported while cache memory
sizes were readily available.

10 Which is sometimes quoted – and used for long-term planning in the chip industry – as 1.5
years or 18 months.
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Fig. 2. Transistor density ( transistor_count
area_in_mm2 ) between 1995 and 2020
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We can perhaps infer that maximum design complexity, i.e. the most complex single
processor core that can be designed by human minds, will be soon reached.11 But even
the total transistor count shows a similar slow-down of factor two which may indicate
an upcoming exponential growth limit.12

One alternative interpretation of Moore’s law is in terms of transistor density (i.e.
transistor_count

area_in_mm2 ). In Fig 2 we see transistor densities from 1995 to 2020 for CPUs,
GPUs, a few deep learning engines13 and some estimated densities derived from pro-
duction technologies at the time they were introduced.14 For 2020, we are already at
5nm technology, but we do not have data on empirical densities. Still, since a silicon
atom has a diameter of about 0.5nm we are only a factor of 10 away from the physical
limit of this technology. And since in 2007 – about 13 years ago – we had 45nm tech-
nology which is roughly ten times larger than 5nm, this means just another 13 years to

11 It may be argued that it has already been reached according to recently found bugs in almost
all modern processors, see [22].

12 GPUs contain millions of similar relatively simple cores and their transistor count per core
would thus be much smaller in this graph, outside the shown range (data not shown).

13 Only three datapoints.
14 These are not intended as maximum achievable densities, as the technology will – if possible

– be improved over time and may give slightly higher densities later, and these densities are
also not known for many actual production technologies – only Intel reports some results. So
please do not be confused by the seemingly impossible results in 2004, 2006, 2008 and 2010.
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go before we reach physical limits, albeit in the unlikely case the doubling time does
not increase further.

It also can be seen that CPUs and GPUs follow roughly the same curve, and are thus
limited by the same constraints. From this graph we can again estimate doubling times
on CPU data15: from 1995 to 2007 the doubling time is 1.78 years, and from 2008 to
201916 the doubling time was 2.36 years, corresponding to a one magnitude increase in
about 8 years. Again the doubling time has increased for the latter interval. So although
the absolute theoretical limits are still 8–13 years away, we already see a reduction in
the exponential magnitude, where according to singularity proponents we should be
seeing a speed-up. Other estimates on when Moore’s law will likely stop working are
even earlier at 2025 [33, 34], which is consistent with an additional slowdown in the
near future.

It has sometimes been mentioned that Moore’s law has become a self-fulfilling
prophecy, and it is true that semiconductor firms have used it for planning (as dou-
bling in 18 months, see [30]). In fact the reliance on transistor counts for long-term
planning is already reduced, amply demonstrated by the fact that Intel stopped report-
ing transistor counts for their processors in 2017. That there is a challenge to actually
fill the technologically available transistor space can also be seen by the fact that from
the 2016-2020 top processors, all but one (80%) are a systems-on-a-chip (SoC), and
thus include other simple components otherwise part of the mainboard or chipset; and
three (60%) include graphical processing units (GPUs) on-chip. This may indicate that
we already have too much transistor space to usefully – and profitably – use for mere
CPUs.

Additionally, as we noted earlier these observed exponential effects have been ob-
tained by diverse overlapping techniques: from 1975 onward by reporting maximum-
complexity rather than minimum cost chips, from 2000 to 2010 by adding relatively
simple cache memory, in 2005-2020 by successively increasing the number of identical
cores on each die. There is no single underlying process to account for even the by-core
transistor counts, so biological metaphors of an uniform growth process fall quite short.

Also, the success of the semiconductor industry has been heavily dependent on ex-
ternal factors, which can be seen by studying the history of the semiconductor industry.
This industry faced several challenges, where they were in each case saved by exter-
nal factors providing a large market for their chips – first for calculators and digital
clocks, then for mini- and mainframe-computers, in the mid 1980s for the IBM PC and
Microsoft with Personal Computers, and in the 1990s for the World Wide Web, which
exploded the hard disk and memory market and also created the need for new powerful
processor architectures to handle images, sound and highly compressed video [30]. If
any of these events had not happened, Moore’s law would have already been broken.

Even worse, as we noted the Singularity requires that costs to achieve this exponen-
tial speedup are at most linear in transistor count or density. However, the investment
for a new semiconductor factory has also been increasing exponentially – doubling ev-
ery four years – and reached US$ 14.3 billion in 2015. This is known as Rock’s law, or

15 We did not use GPU data since the number of datapoints was smaller while its shape is very
similar to the CPU curve.

16 No data point existed for 2020 at the time of writing this paper.
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Moore’s second law [35]. In fact, already in 1979, Moore noted that the man-hours per
month required for integrated circuit production were also growing exponentially. That
all the effort put into making chips faster using cheap cache memory, pipelining, out-of-
order execution, branch prediction, and other methods to increase performance has not
been without issues can be seen in the recently found bugs such as Meltdown and Spec-
tre [22] – an indication that we can build things we do not truly understand until decades
later and that current developments costs, already quite high, are still underestimated.

3.1 QUANTUM COMPUTING

Quantum Computing (QC [36]) is sometimes mentioned as an alternative to classical
computing which may allow higher packing densities. At first glance it looks promis-
ing, since it uses qubits which can store quantum superpositions instead of 0-or-1 bits.
This means a quantum computer with n qubits can store 2n values and can also run
reversible operations on them in parallel. However, the obtained results stored within
the qubits cannot be read out directly since each measurement collapses the wave func-
tion and forces the qubit’s value to either 0 or 1 which depends stochastically on the
collapsed superposition. So for an useful algorithm as few measurements as possible
must be performed to reconstruct the relevant parts of the collapsed wave function,
restarting the quantum computation after each measurement. If this can be done suc-
cessfully, quantum computers may be able to compute some functions exponentially
faster than classical computers. Such quantum supremacy has however not been conclu-
sively demonstrated and would in any case only be limited to a small set of algorithms
proposed for quantum computers. For initializing the qubits, executing operations, and
reading out the results classical computers are needed.

Quantum computers can potentially simulate normal computers. However, in this
case each qubit corresponds to a classical bit and there is no advantage over classical
computing w.r.t. transistor packing density.

It should also be noted that despite the potentially much higher packing density for
temporary storage (qubits), the quantum gates themselves can – in almost all currently
proposed quantum architectures – not be made smaller than a single atom, limiting the
transistor packing density in a similar way as for classical computing.

3.2 SPINTRONICS AND PHOTONICS

A combination of spintronics and photonics could achieve much faster computers run-
ning at terahertz frequencies – about 250 times faster than current CPUs – by combin-
ing information storage via magnetic spin and purely photonic gates. This is an active
research area [37], but no working system with logic gates and memory has been pro-
posed as of now. Even if such a system already existed, major additional minaturization
would be needed to build a chip competitive to classical designs. If we also managed
to shrink logic gates and memory units down to single atoms, it would put us at a point
about 30 years beyond Moore’s law. However, this would need major breakthroughs in
this field over the next ten years and is therefore rather unlikely. Also, IBM [38] has
already demonstrated a 100 GHz transistor in 2010, so higher clock rates may also be
achievable using more classical transistor designs, negating this speed advantage.
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3.3 REVERSIBLE COMPUTATION

Classical computation works irreversibly and has therefore a lower bound on heat dissi-
pation due to entropy increase [39] which will become more relevant the closer we get
to single-atom transistors. One possible solution for this is to use reversible computa-
tion which does not generate heat. This can be done by using reversible gates. However,
reversible computation is inefficient in the sense that many bits must be preserved to en-
able reversibility which do not contribute to the actual computation and thus reduce the
effectively usable transistor packing density. Also, if reversibility cannot be completely
obtained, it may be necessary to run a reversible computer very slowly to limit heat dis-
sipation. Such reversible computers are needed to drive quantum computing as even the
small heat dissipation from the erasure of a single bit may destroy the fragile quantum
states on which the operation of the quantum computer relies on. It is clear that such de-
signs will always be slower than corresponding designs using irreversible computation
and appropriate cooling.

4 A CASE FOR HISTORY

In light of these negative results, why is the myth of the technological singularity still
so compelling? To better understand this, let’s take a look at AI history, starting with
the precursor of AI – Cybernetics. This field is similarily contradictory and emotionally
burdened as the singularity discussion, and retained its own persistent myth, as this
quote shows:

“One pattern is spiritual. Not always, but often, the machine has become a
godhead, an idol... Science created a totem. The machine became the avatar...
A second powerful pattern is contradiction... Automated factories would free
workers from undignified drudgery, yet deprive them of their dignity... Com-
puters were dumb and could be hacked by teenagers, yet they could outsmart
humans... More networked computers would lead into a "dossier society" of
ubiquituous surveillance - and enable anonymity and a freer and better polit-
ical order. Networked information system would make nations more vulnera-
ble and more fragile than ever, and networked command-and-control systems
would make their armies more dominant and more lethal than ever. Machines
would be future society’s hard-charging overlords and its soft underbelly. The
myth [of cybernetics] hides these contradictions and makes them acceptable.”
(Rid [40], p.348f, quoted with friendly permission by the author)

The myth of the upcoming technological singularity is very similar in spirit to the myth
of cybernetics. In a way, the discussion on the singularity reflects earlier cybernetics
discussions now only known to students of AI history.

In the research proposal for the Dartmouth meeting in 1956 – where the term Artifi-
cial Intelligence was coined – it was proposed that “a 2 month, 10 man study of artificial
intelligence be carried out” and it was concluded “We think that a significant advance
can be made in one or more of these problems if a carefully selected group of scientists
work on it together for a summer.” [41]. Now, in 2021 – 65 years later – it is clear that
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the scope and breadth of the task has been severely underestimated by many orders of
magnitude.

But Artificial Intelligence actually starts a bit earlier than that. We can see it already
starting in 1943 with McCulloch and Pitts [42], who proposed a boolean circuit model
of the brain.17

In 1950, Turing [43] reformulated the question of whether machines can think to
whether machines can behave intelligently, and proposed an operational, non-constructive
and non-reproducible test for intelligence – the Turing test. He suggested major com-
ponents of AI: knowledge, reasoning, language understanding and learning, and an-
ticipated all major arguments against AI. Nowadays, Chatbots based on text-mining
terabytes of chat room logs are often judged intelligent by non-experts [44], however
they still have practically no chance to fool an experienced AI researcher.

Early AI successes like Samuel’s checkers program [45] which could beat human
players and was trained only against itself, Newell and Simon’s Logic Theorist [46] who
found more elegant proofs for some known mathematical theorems, and Winograd’s
Blocks world [47], which could answer questions and act in a simplified blocks world
with the abilities of a three-year old child have initially confirmed the optimism at the
Dartmouth meeting.

However when we look closely with the benefit of hindsight, we note that – for ex-
ample – checkers has a very simple structure that makes the simplistic approach work
where it failed with more complex games such as Chess which was only solved many
decades later. Another example is Backgammon, where a temporal-difference learning
algorithm [48] achieved grandmaster-level performance with just a handful of heuris-
tics. It was later found that the game’s structure fit well with the coevolutionary learning
paradigm [49], which explained most of its success and why temporal difference learn-
ing did not work on many other games. The blocks world AI actually only understood
very specific simple sentence patterns. Even slightly different formulations or typing
errors make the system fail to understand – it is extremely brittle like most early AI sys-
tems. Now, 65 years later, we are finally able to build systems which understand written
and even spoken speech far more robustly, but it has been extremely hard to get here.18

One of the reasons why it has been hard was computational complexity. Most hard
problems get exponentially harder with larger problem sizes, meaning that small in-
stances (toy problems) can be easily solved, but even slightly larger problems take
years, and realistic problems may take longer to solve than the remaining lifetime of
the universe.19

The solution proposed around 1969-1979 was knowledge-based systems, resulting
in the birth of the expert systems industry. However, knowledge as stored and pro-
cessed by machines is very different from knowledge stored and processed by humans.

17 See Section 8 for an overview of different brain models that have been proposed in known
history.

18 Compare e.g. the simplicity of TD-Gammon learning with AlphaGo [50] w.r.t algorithmic
complexity and the amount of computational power needed to train the system.

19 According to the big crunch theory. If our universe were to expand indefinitely, we would still
at some point run out of energy, but it would be much later.
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For example, contradictory statements make a knowledge base completely useless20,
which makes it exponentially harder to build larger knowledge bases, as they have to
be completely free of even the smallest contradiction. So this problem – exacerbated by
overarching promises – later lead to a bust in the expert systems industry: the so-called
AI Winter.

From 1988, there was a resurgence of probability, increase in technical depth, and
the birth of Nouvelle AI: Artificial Life, Genetic Algorithms, and soft computing such
as Fuzzy Logic. From 1995 the beginning of the Agents metaphor, a stronger focus on
embodiment – another thing which is coupled strongly with human intelligence – and
an increasing number of real-world applications was observed.

The Dot-Com crisis from 2000 reduced investment into computer technology for
some time, so in the first decade of the 21st century, not much progress was made.
Still, in 2005 Stanford’s Stanley [51] won the DARPA Grand Challenge, driving au-
tonomously 131 miles through the desert without using a camera. Laser-range LIDAR
sensors were used throughout and almost all parts of the system were trained and tuned
using machine learning algorithms, showing a clear advantage over the handcrafted
systems used by competitors.

In 2010, Microsoft introduced the Kinect 360◦ motion sensor, which had been
trained using Random Forest classifiers [52] to recognize human figures from depth
camera21 recordings. In 2011, IBM’s Watson [53] beat the two greatest Jeopardy! cham-
pions.

Deep Learning took off in 2012 with the seminal paper by Hinton et al. [54]. This
was due to several factors – wide availability of software frameworks, cheap GPU hard-
ware due to the successful gaming industry, and better learning algorithms – which we
will go into more detail later in Section 5. In 2015 Tesla announced a software update
to enable self-driving for their electric cars on freeways. Their system was end-to-end
trained using Deep Learning, albeit using only cheap 2D cameras and radar, and is
therefore not as robust as LIDAR-based self-driving systems. In 2016, Google Deep-
Mind AlphaGo [50] beat 9dan Go champion Lee Sedol 4:1. In 2017 AlphaZero [55]
demonstrated learning to play Chess and Shogi (chinese chess) at champion level in
days. Rational solvers have been optimized to such an extent that large proofs can be
generated in days, such as the proof that the 5th Schur number S(5) equals 160 [56].
This proof is 2 petabytes large, and needed 14 CPU years computation time. In 2019,
AlphaStar [57] won in the real-time strategy game Starcraft II 10:1 again human ex-
pert players. In 2020, AlphaFold [58] won the biannual Critical Assessment of Protein
Structure Prediction competition by predicting the 3D structure of proteins much better
than the closest competitor. So it is clear that Deep Learning dominates AI research at
present. But how did this happen?

20 Known as ex falso quodlibet: from false [knowledge] anything can be derived.
21 A depth camera returns pixel arrays similar to a normal camera. However the pixel values

correspond to the measured distance of each pixel from the camera plane rather than brightness
or color. These distance measurements are usually obtained via active sensing.
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5 THE RISE OF DEEP LEARNING

No criticism of the singularity would be complete without a section on Deep Learning.
The history of deep learning started with the already mentioned work of McCulloch and
Pitts [42] who presented a simplified model of nerve cells, which computed a thresh-
olded step function on a weighted sum of inputs. Rosenblatt [59] introduced a formal
definition for such a system, coined the term perceptron and demonstrated a learning
algorithm that could learn simple input-output functions such as AND, OR and NOT in
a single perceptron.

Minsky and Papert [60] incidentially proved in 1969 that a single perceptron could
not learn the XOR function – or any other not linear separable function. Although
Rosenblatt could demonstrate – as McCulloch and Pitts [42] had done before – that
a combination of several perceptrons could learn XOR, the lack of a suitable training
algorithm for such combinations of perceptrons still lead to an almost complete stop in
research on neural networks for about a decade. The perceptron remains in its original
and modified forms the core unit for neural networks, including convolutional and deep
learning networks.

Only when Werbos [61] independently reinvented concepts already known by Kel-
ley [62]22, and proposed the backpropagation learning algorithm for training networks
of interconnected perceptrons arranged in layers (multi-layer perceptrons, MLP23), re-
search continued albeit at a relatively low level. Rumelhart [64] soon demonstrated that
this learning algorithm led to useful internal representations for the internal layers.

LeCun [65] introduced a new form of neural network which was inspired by the
visual system24 and arranged the perceptrons in their natural 1D, 2D or 3D order and
introduced two new types of layers:25

– Pooled or subsampling layers, which compute global statistics, such as maximum
or average over a window of perceptrons from the previous layer, just like a simple
filter.

– Convolutional layers, where weights are shared between perceptron units, i.e. each
point of the next layer computes a sum with the same weights, but on a different
window of the previous layer – a filter or convolution in image space.

Such a network was trained to recognize handwritten digits for the US postal service
and similar networks are still used by many OCR systems. Lastly the seminal paper by
Hinton et al. [54] to which all the field’s major research labs and researchers contributed

22 Tragically, this work would already have been available when Minskey & Paperts book was
published. However since it was a completely different application and research field, this was
not noticed until much later.

23 A second way to solve the XOR-problem for perceptrons is to regularize the model space by
means of maximum margin hyperplanes (also making the solution unique) and introducing the
kernel trick – expanding the input feature vector with base functions. This lead the the field of
Support Vector Machines (SVM, [63])

24 It however ignores the 90% LGN feedback connections which we will mention in Section 8.
25 Previously, only fully connected layers were used where each perceptron within one layer is

connected to all perceptrons within the next layer.
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lead to renewed interest in this field and – due to the new focus on networks with many
levels, although it also introduced new layer and interconnection types and perceptron
activation functions – it was renamed to Deep Learning.

So why did it take Deep Learning so long to take off? Earlier, it was generally be-
lieved that neural networks were very unstable learning systems and not suited for a
wide range of problems. It was believed that overfitting and getting stuck in local min-
ima would be a major problem for many tasks. Also, it was considered infeasible to
obtain feature sets competitive to handcrafted features, especially for image and audio
processing which had been researched very intensively up to this point. The lack of
publicly available source code to train such systems was also a problem. For example,
we replicated work by LeCun [65] in [66], but the source code used to train the con-
volutional network model was only available under a cumbersome license, and heavily
tailored for the task of handwritten digit recognition, and thus could not be used for
other projects.

To enumerate more systematically, the main reasons why Deep Learning took off

were the following:

1. Moore’s law and the corresponding increase in single and multi-processor perfor-
mance since 1970. This was especially important to Deep Learning, as classical
(human-written) machine learning algorithms are very seldom highly scalable26 –
i.e. they profit linearily from faster processors, but much less from more processors.
Now that Moore’s law is mostly driven by integrating even more parallel proces-
sors, classical code profits much less from the speed-up than Deep Learning. In
fact, Deep Learning training algorithms are almost infinitely scalable and can be
run in parallel with one processor per perceptron unit, of which there can be sev-
eral million, albeit communication costs will at a certain point begin to dominate,
limiting scalability.

2. The resurgence of the vector processor in form of graphical processing units (GPUs).27
This factor was driven by the gaming industry in its goal to create ever better com-
puter game graphics on similarily improving monitors (in terms of resolution and
update frequency). Training and evaluation of Deep Learning networks basically in-
volves computing relatively simple, very similar operations on a large set of units.
A normal CPU can of course perform these operations, but is optimized for a more
diverse workload and normally slower than a specialized GPU for such simple es-
sentially vector operations. It turned out that GPUs can easily be used for Deep
Learning and initially speeded up training by one – and later two to three – orders
of magnitude, and in fact there are now specialized processors optimized for Deep
Learning tasks that obtain even higher speedups.

3. Once a large set of research groups applied these methods, it became obvious that
the perceived disadvantages (instability, local minima) were not significant and
could be overcome relatively easily. In fact Deep Learning systems soon domi-
nated visual recognition, image classification and speech recognition tasks within a

26 Except perhaps for Random Forest [67], which we’ve applied in unpublished research and
found to scale very well.

27 If you remember the large Cray computers – yes, these were vector processors as well and they
could have been used for Deep Learning already in the 80ies, forty years ago as of now.
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few years, thus confirming that they are able to create internal feature spaces (rep-
resented within the first few layers after the input layer) that are superior to hand-
crafted human feature spaces in many tasks. This does not mean that Deep Learning
system are without issues – failure modes as described in [68]28 and [69]29 indicate
that their models are quite different and less robust than the ones human brains use.

4. New and improved training algorithms such as Adam [70] reduced both training
time and the risk of getting stuck in local minima, which had previously been a sig-
nificant problem in training deep learning networks. Initializing the model weights
not randomly but with statistical methods (e.g. PCA) also adressed these issues and
furthermore speeded up training time significantly. Both made it possible to train
larger and more complex network models.

5. With Torch (2002), Theano (2007) and especially Tensorflow (2015) [71], a large
set of deep learning frameworks with GPU support became mature and widely used.
Although Theano has ceased development in 2017, and Torch in 2018, pyTorch –
a fork of Torch written in Python – is still in active development as of December
2020.
Especially Tensorflow, which contains a large set of samples and pretrained models
including training code and in most cases the data needed to retrain the model itself
– combined with the interface in the easy-to-learn programming language Python
– has made Tensorflow very popular. From version 1.5, models could be converted
to Tensorflow Lite to run on mobile phones and embedded platforms such as the
Raspberry Pi. All these frameworks – most of which are available under a permis-
sive license such as MIT or Apache 2.0 – made applying the corresponding learning
algorithms much simpler, and led to a corresponding increase in researchers using
deep learning, and therefore also in the number of applications.

But does all this mean we have already – or will shortly have – achieved human-level
intelligence, i.e. an Artificial General Intelligence (AGI)? Sadly, no.

6 THE FALL OF DEEP LEARNING

One major reason why Deep Learning is not an Artificial General Intelligence (i.e.
a human-level AI) is that our training algorithms create models that have completely
different – and far more brittle – failure modes than human intelligence, amply demon-
strated by systems such as DeepFool and ColorFool [69, 68]. So the learned models
are quite different. This alone however could simply be an artefact of the network ar-
chitecture. However, it is also quite inconceivable that even relatively simple learning
algorithms such as Backpropagation – to say nothing of Adam – could be actually used
within our brains. The learning algorithms are much too different. Also, the nerve sys-
tem model of Deep Learning still basically reflects the perceptron and is by no means a
biologically plausible model as this incomplete list of open issues shows.

28 Arbitrarily changing object classifications and confidences by specific changes in background
colors for input images.

29 Arbitrarily changing object classifications and confidences by adding specific noise to the input
image.
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1. It is unclear how the goal values could be transported through all neural layers to
compute the error feedback. Also, despite decades of experiments, no backpropa-
gation error signal was ever observed.

2. Biological neurons communicate via binary spikes and not via numerical values
3. Synchronization between neurons – an extremely important mechanism used in the

brain – is not modelled in almost all Deep Learning networks.
4. Backpropagation would need perfectly synchronized discrete steps which is not

possible as biological nervous systems do not have a sufficient precise global clock.
5. The weights for the backpropagation connections would have to mirror the weights

of the corresponding forward connections. There is no known biological mecha-
nism which could ensure this.

6. Backpropagation would need to know the non-linear derivates of all neurons in the
higher layers. Again, there is no known biological mechanisms which could – even
potentially – compute these values.

It is clear that Deep Learning reflects one deeper principle on how neural networks build
complex models, but it is also similarily clear that it is just a small part of the whole
picture.

Additionally, the original inspiration for convolutional neural networks came from
the human visual system – however the 90% feedback connection to the LGN nucleus
from almost all other brain areas were completely ignored. But such massive feedback
loops may be essential for robustness (more details see Section 8).

The DeepMind series of AlphaGo [50] and AlphaZero [55] models is perhaps best
suited to show the disadvantages of Deep Learning from a different view point: First,
these system can only be trained by self-playing resp. by creating extremely large data
sets (sometimes implicitly) as millions to billions of samples are needed. No human
player can generate even a small part of the training data these systems need to get up
to speed. This also means that if one player notes a way to beat the system – easier
in perfect information games such as Go, Chess or Shogi, since there are no random
fluctuations in the environment – it is always possible to beat the system in exactly the
same way, and there is no easy fix for this.30 It’s possible to force the system by re-
training to choose another path at a critical juncture, however this might weaken overall
performance, and in any case there will always be other weaknesses to exploit. What
cannot be done is to train the system to play well against a specific player since – as
noted above – even if this player played Go games their whole life, and all games were
stored and trained, this would not even make the smallest difference.31 Especially for
AlphaStar [57] (online first-person gaming) it was mentioned that initially the model
used recorded human player movements as otherwise the exploration state space would
simply have been too large to find meaningful movement patterns. However note that
children and teenagers have no problems learning to play this game without such infor-
mation in single player mode.

30 We may assume the creators of AlphaGo are aware of this issue and perhaps it informed their
decision not to make AlphaGo publicly available.

31 This was clearly mentioned at one of the press conferences after the AlphaGo win, and should
of course be obvious considering the large amount of data such systems need for training.



18 Alexander K. Seewald

Realistic estimates towards when Artificial General intelligence will be available
tend towards several centuries. As mentioned Hanson [17] (p.63) estimated 4-8 cen-
turies should Moore’s law reduce just by a factor of two but still keep exponential over
the whole time period, which is actually very unlikely as we will hit strong physical
limits in the next decade. Since the beginning of AI research in 1956, the median fore-
cast of the duration of time until human-level abilities would be achieved in AI research
was always around 30 years. Needless to say, all these forecasts were wrong.

So, sadly, although Deep Learning is a big step towards understanding intelligence
– or more precisely, how extremely simplified pseudo-nervous system can be trained us-
ing biologically implausible learning algorithms to solve tasks that for humans require
intelligence – but not an AGI at all. Many further significant advances would clearly be
necessary to achieve this.

7 SINGULARITY CONTRADICTIONS

Should we somehow still manage – by serendipity, sheer luck or perhaps as a download
from an extinct extraterrestrial civilization – to create an Artificial General Intelligence,
it is by no means assured that it will achieve superintelligence. There are quite a few
somewhat obvious contradictions within the story of the technological singularity which
would also apply to any AGI (including ourselves, of course).

7.1 THE MYTH OF BETTER INTROSPECTION

It is seldom questioned that an AGI would be able to bootstrap itself to higher intel-
ligence quite easily. However, why would an AI at the same intelligence level as us
have better insight into its internal structure? Why should its mind work parallel and
not serially as ours, limiting the obtainable speedup as well as self-reflection? We note
that although the human brain is a massively parallel system, the human mind is still
only able to do one thing at a time and is very bad at multitasking. It is not obvious why
such a constraint should not be a general constraint of all minds, perhaps driven by the
necessity for limited self-awareness and an unified stream of consciousness.

A superintelligence is expected to be able to fully understand humans. But how to
get from a human-level Artificial General Intelligence to a superintelligence when it
cannot improve itself much better than a human? The exponentially increasing speed
of self-improvement, so essential for the technological singularity, is not likely to hold
at any intelligence level. Otherwise programming code would not still be written by
humans. It is for example possible to train Deep Learning networks with a few mil-
lions lines of C code. They will then output syntactically correct code with few errors
(mostly concerning assignments to previously undeclared variables) that is completely
meaningless. Without a guiding mind and intentionality behind it, even extremely sub-
tle abilities are essentially useless. And a true AGI written e.g. in C that would be as
proficient as the best human C programmer would still be no better suited to rewrite
itself to become smarter – similar as we humans do not have a privileged insight into
the workings of the 10 billion neurons of our brain.
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Even if a superhuman intelligence could be created somehow, it would potentially
be able to improve lesser human-level AI systems – perhaps even to its own level – but
it is rather unlikely that it would be able to indefinitely improve itself at ever increas-
ing rate. As any programmer knows, radical speedups can sometimes be obtained, but
the law of diminishing returns sets in and at some point the effort to make a program
go faster is simply not worth the obtainable speed-up. In many cases, optimizations
are even detrimental and reduce performance. It is unclear why this should be different
for the extremely complex operations normally associated with high-level cognition. If
anything, one would expect even steeper diminishing returns here. And improvement
in hardware is time-consuming and costly. A new semiconductor plant takes billions
of dollars to set up and only runs cost-effectively after several years of extensive ex-
perimentation and optimization. To believe a superhuman intelligence can cut through
all these issues, and ignore physical reality and all manufacturing constraints in build-
ing its successor is only a pipe dream. Especially since it is well-known that building
robots that are as flexible and versatile as the human body is extremely hard, as any-
one who has ever built robots can attest to. Despite decades (soon to be a century) of
research the state-of-the-art bipedal robot apocalypse could at present be fended off at
the top of stairs with slingshots. In fact embodied robots instantly seem much more
intelligent than their simulated counterparts even if they are not, simply by utilizing the
randomness of real environments, and it is unclear whether an intelligence could ever
be created without some kind of grounding in physical reality – which would again
preclude superfast self-improvement.

Concluding, we find it increasingly implausible that even a superhuman mind could
bootstrap itself to a significantly higher intelligence level, and more so that it could do so
at an ever increasing rate (as in Kurzweil’s [12] law of accelerating returns). So even if
a superhuman AI would magically drop into our hands, it would not cause a singularity.
And it would have to drop, since despite 65 years of research we have actually no idea
how to build one, or even just an AGI.

7.2 THE MYTH OF CONTINUED EXPONENTIAL ECONOMY GROWTH

Assuming an economic doubling time of 15 years (assumed by [17]), a century means
about seven doublings, meaning that even in one century the economy would be 27 =

128 times larger than it is now. As we mentioned, AGIs – surely a necessary precursor of
the singularity – are at least two and more likely 4-8 centuries away. Historically, there
has been a strong correlation between economical growth and energy consumption, but
even a small poportion of a 128-fold increase in energy consumption would probably
change climate to such an extent that human survival is not longer feasible.

The singularity story mainly counters this with superexponential dematerialisation,
i.e. the theory that it is possible to obtain similar growth rates while using ever less
energy and matter. This implies not only an uncoupling of energy consumption and
growth, but an inverse correlation – something that was never seen in the past of the
industrial revolution for the last 200 years.32 But as the necessary technologies are at

32 It is also quite unlikely that it ever happened before in human history, seeing that for most of
history almost all people lived near subsistence levels.
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least several decades in the future – if they can be made to work at all – this will come
too late as only a single doubling in energy consumption (and thus CO2 emissions) will
be enough to change the biosphere in a way that makes living on this planet no longer
feasible for the number of people who are currently living here. Much more likely is
a radical reduction of growth rates in energy consumption: for example Sharma [72]
quotes a global growth rate of energy of 0.8% for 2016-2030 and 0.1% for 2030-2060.
This would mean diverting time into more efficient processors which need less energy,
and reducing the expected growth rate in computer performance further.

For comparison, the human brain consumes about 50W of energy and generates this
energy in a completely sustainable way, while Google consumed 10.6 Terawatt hours
in 2018, which is up from 2.86 Terawatt hours in 2011, corresponding to a growth
of 20.58% per years, or a doubling time of 1.66 years (20 months), even faster than
the doubling time in transistor count. It is clear this cannot be sustained for even one
additional century.33

In fact Gordon [73] points out that measured economic growth has slowed around
1970 and slowed even further since the financial crisis of 2007/2008, and also argues
that the economic data show no trace of a coming Singularity as imagined e.g. by Good
[5] already in 1966. So the growth observed due to Moore’s law seems to be the excep-
tion rather than the rule, but even this is slowing down as we already showed.

7.3 THE MYTH OF RECURSIVE SELF-IMPROVEMENT IN RESEARCH

Another reason why the arbitrary speedup so desparately needed for the technological
singularity is a mirage: The reason why research follows phases is that first a critical
set of observations must be present before a theory can be formulated. This process
cannot be arbitrarily sped up – e.g. new physical measurement devices must be de-
signed, tested and applied. For example, in physics before Quantum Mechanics, the
consensus in the field was that basically most of physics was solved, and only a few
strange quirky observations remain which would soon be resolved – such as black body
radiation, which is predicted by classical theory to be infinitely high when integrated
over all wavelengths. This was called the Rayleigh-Jeans law or ultraviolet catastrophe.
Quantum mechanisms quantized the photon output and thus obtained results consis-
tent with observations, but most of physics had to be reevaluated in light of these new
assumptions.

In fact Alston [15] found that research funding gives far less than linear returns.
It is inconceivable that any kind of intelligence is somehow completely immune from
these fallacies and pitfalls, especially since the requirement for recursive ever-faster
self-improvement prevents its grounding in physical reality, which may be an essential
condition for intentionality, consciousness and human-level intelligence.

33 Google claims to use 0.3 Wh for the average query. With this amount of energy an average
human can think for 21.6s, which might just be enough to remember what you were searching
for yourself instead of googling it.
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8 MIND IS ALWAYS THE HIGHEST AVAILABLE
TECHNOLOGY... AND ALWAYS WILL BE.

It is part of a long-standing tradition in human history to take the newest technology
and propose that humans – or the human mind – work that way. For example, Galen of
Pergamon (129–216 CE) thought that the psychic pneuma (cerebrospinal fluid) who cir-
culate in the ventricles (liquid-filled holes in and around the brain) is conducted along
the nerves (thought to be hollow) and effects all psychic phenoma such as sensation,
elaborating thoughts and movements – i.e. the mind [74].34 This was at a time when
the first distillation experiments were conducted, and parlour tricks such as boiling
wine and igniting the alcohol vapours inspired the idea that invisible influences may
be present in liquids.

In 19th century, Victorian England, Huxley [75] proposed that human react as au-
tomata in all our apparently free decisions. This was probably inspired by ingenious
automata such as [76] – an automaton that could write three different poems and four
different drawings; [77] – a mechanical duck that could quack, muddle the water with
its bill, drink and eat and seemingly defecate (although the last part was faked); and
[78] – an automaton that could reproduce natural speech, as well as countless others in-
cluding numerous fakes such as the Mechanical Turk. The astonishing performance of
these devices led to Radical Behaviourism where the metaphor of humans as automata
was upheld for decades despite ample evidence to the contrary.

We already mentioned McCulloch and Pitts [42] who proposed a boolean circuit
model of the human brain at the beginning of the computer era, where boolean circuits
were the highest available technology.

Quantum mechanics is the theory that brought us – among other things – extremely
fast computers, lasers, DVD and bluray players, LEDs and the atomic bomb – and
can thus also be considered the highest technology a few decades later. Therefore it
should not surprise us that Penrose [79] proposed a quantum-mechanical mechanism to
explain the mind, which has been taken up by many other researchers (for an overview
see Adams [80]) – although admittedly many of their hypotheses cannot be falsified.

In the 21st century, we now have Deep Learning and again it is assumed that the
brain works in a similar way. However, this is a fallacy for several reasons. For one, the
best networks are trained used ground truth data in a teacher/pupil setting, while most
of the complex work of the brain (such as learning head/eye coordination, segmentation
of world images, walking, learning to speak, exploration of unknown environments, ...)
is done with no or almost no explicit external feedback. We simply do not have unsu-
pervised learning algorithms that work as well as the supervised learning algorithms
commonly used. Secondly, trained networks can be easily provoked to make mistakes,
either by adding specific noise into the input images [69] or by specific changes in
background colors [68]. Human image segmentation is not susceptible to either attack,
in practice the changes – especially of the latter – are so subtle that they are hardly vis-
ible even when the original and modified images are shown side-by-side, but they still

34 Others such as Aristotle saw the brain as mechanism intended for cooling blood, and instead
the heart as the seat of soul and mind.
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completely confuse DL systems. Optical illusions in humans are on the other hand far
more subtle and complex despite our eyes recording images of much worse quality.

A close look at the brain wiring might give us an answer as to why Deep Learning
networks modelled on the visual system have these massive vulnerabilities: the lateral
geniculate nucleus (LGN), where 90% of the retinal axons (who carry information from
the eye) terminate, gets only 10-20% of its input from these connections ([81], p.532).
Surprisingly, 80-90% of its input connections originate in many other regions of the
brain.35 It is quite likely that these other connections modulate and adapt image pro-
cessing yielding the practically perfect segmentation we effortlessly create based on
rather bad "eye camera" input. However, if that is the case, to get similar performance,
we must also emulate the rest of the brain – the task of image segmentation is then AI-
complete, and thus needs an Artificial General Intelligence (AGI). Again, reasonable
estimates place AGI at least two, and more likely 4-8 centuries into the future ([17]
p.61–63).

9 CONCLUSION, DISCUSSION AND OUTLOOK

We are not overly concerned that the exponential growth in computing performance will
quite likely stop in the near future, as it will also take care of planned and unplanned
obsolescence, the huge amount of electronics garbage generated by neglecting the ac-
tual possible lifetime of electronics devices, the abysmal conditions under which people
prospect essential heavy metals such as lithium – the main component in rechargable
batteries which are major parts of smartphones, notebooks, and electric cars – and the
large amount of time we spend to reacquaint ourselves with new versions of software
which are often less intuitive and slower than the old versions.

On the downside we will have to think more deeply about optimizing algorithms
and creating – or training – newer, more efficient ones. But since we already have more
computing power than we can sensibly put to use, that is not a large issue. We can no
longer expect our old systems and algorithms to get exponentially faster automatically.
But we won’t have to buy or rent new hardware every few years to realize these gains,
which more than offsets these disadvantages.

So where do we go from here? We have taken the liberty of writing up the areas
where – in our humble opinion – too little is done presently.

1. Currently, Deep Learning algorithms focus mainly on the supervised learning case.
However, unsupervised and reinforcement learning in realistic settings – i.e. much
less training data, transductive and transfer learning, and especially embodied learn-
ing on robots interacting with the physical world – is severely underrepresented.
It is our conviction that simulations and offline-learning, albeit useful, can never
replace the interaction with physical reality, and that this is the one area where Ar-
tificial General Intelligence (AGI) will – eventually – emerge (in 4-8 centuries).

35 Confirmed are connections to the visual cortex, superior colliculus, pretectum, thalamic retic-
ular nuclei, local LGN interneurons, mesencephalic reticular formation, dorsal raphe nucleus,
periaqueuctal grey matter, locus coeruleus and the optic tectum (superior colliculus).
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We would go so far as to propose that each AI researcher should be forced to build
robots as part of his/her education.36

2. We have many frameworks for Deep Learning on sufficiently powerful computers.
However, there have been only a handful of systems that allow learning directly on
the robot where power consumption, runtime and computational power are severely
restricted. We do not yet have the learning algorithms that are sufficiently fast to
learn big networks in real-time on these platforms, but perhaps we can work on
this. Theoretically, streaming data to a larger platform via Wifi can resolve this to
some extent, however our experiences were mixed since latency is a large issue and
cannot be completely controlled, also the transfer of uncompressed video frames37
is more severely limited by latency than bandwidth [83], so the upcoming 5G stan-
dard which focusses mostly on bandwidth will not be much help.

3. Deep Learning algorithms are not at all implemented in a biologically plausible
way. Although good results are often obtained, it is unclear how our learning al-
gorithms could ever be implemented in an actual biological neural system. So it is
quite clear than biological systems must use different – and clearly superior – learn-
ing algorithms. There is much work on how biological in vitro neural assemblies
can be trained for tasks, but again the underlying algorithms are not known. For
example, synchronization between neural assemblies – an important mechanisms
for e.g. binding and attention control – is almost completely ignored in the Deep
Learning community. It would be interesting to study the actual algorithms used
by biological neural systems which after all have had much time to perfect their
methods.
A small model organisms, C. elegans, commonly used for ageing research, has a
very small nervous system of only 302 nerve cells. Although its nerve cells are dif-
ferent from mammalian nerve cells38, if we could record sufficiently detailed traces
of the complete nervous system, we may be able to decipher its workings. This
organism has six known high-level learning behaviours, some of which can also be
triggered in the adult specimen. It would therefore be a reasonable starting point for
such an analysis, perhaps better suited than large biological neural assemblies as it
is a fully embodied and biologically grounded organism. We have done some minor
work on this organism in [84], but so far nobody has proposed a recording system
that can reliably record all neurons of this organisms with sufficient temporal and
spatial accuracy. Once this is solved, progress may be rapid.

4. The human brain uses about 50W of energy. However the capabilities of the hu-
man brain are so much higher than the best currently available platforms which
used comparably amounts of power. There are several recent successes in AI e.g.

36 Of course this will not always work – some roboticists sometimes get caught in these myths
as well, e.g. [10]. So perhaps a psychological course on the dangers of antropomorphisation
should also be mandatory.

37 We note that the existing compression algorithms have been optimized to remove parts of
images and videos not observable by the human eye and are likely suboptimal for a non-human
visual system. At the very least, training should be done on exactly the same data which was
originally collected as models trained on compressed and uncompressed data differ and can
not be used interchangably [82].

38 They do not have Ca2+ channels and therefore do not exhibit action potentials.
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AlphaGo [50], but the computers and GPUs needed to achieve these successes use
approximately 6-10 orders of magnitude more power than the human brain. If noth-
ing else, it would be interesting to focus more resources on researching energy-
efficient computing systems and platforms. To some extent this has already begun.
This point somewhat overlaps with 2.

5. All minds need self-representation, and it is quite unclear how even modest self-
improvement at the highest level can happen without such a self-loop representa-
tion. However, presently most Deep Learning networks are either not recurrent (i.e.
the do not contain loops) or they only loop inputs or single intermediate layers, not
exhibiting the rich kinds of loops between many areas apparent in the human brain
or other nervous systems. The reason for this is mainly limitations of our training
algorithms and lack of suitable training data (see also point 1 on the necessity for
more research into unsupervised learning). Hofstadter [85] has also proposed such
loops as central to mind and intelligence.

These are the things we can do as small steps towards an AGI. However, serendipity
may achieve what we cannot directly aim for. While we do not believe AGI will emerge
spontaneously on the internet (as imagined in [86]) – the internet, although rich in con-
tent and structure, is neither as complex as the real world nor does it have a sufficient set
of strict rules that govern possible interactions and serve as seeds for symbolic computa-
tion – it could perhaps emerge in a given sufficiently complex computational structure
that also includes interaction with physical reality (as imagined by Hogan [87]). The
same author has also written a very insightful critical book on Artificial Intelligence
[88] which – although somewhat dated – still contains many valid criticisms.

But let’s not cite only science fiction authors on this: Austrian Nobel Prize winner
and physicist Erwin Schrödinger notes in the epilogue of What is Life? and also to some
extent implies in Mind and Matter that all minds must be implemented at the lowest
level of physical reality, i.e. “I ... am the person, if any, who controls the ’motion of the
atoms’ according to the Laws of Nature.” ([26], p.87). A candidate mechanism, Orches-
trated Objective Reduction, has been proposed by [79] and defended in [89], however
it is quite implausible and has been severely critized. Still, if we follow Schrödinger on
this, mind must be found at quantum levels or below. So perhaps we will someday ob-
tain valuable information from the unlikely direction of fundamental physics research
as well.
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44. Bradeško, L., Mladenić, D.: A survey of chatbot systems through a loebner prize competi-
tion. In: Proceedings of Slovenian Language Technologies Society Eighth Conference of
Language Technologies, pp. 34–37 (2012)

45. Samuel, A.L.: Some studies in machine learning using the game of checkers. IBM Journal
of research and development 3(3), 210–229 (1959)

46. Newell, A., Shaw, J.C., Simon, H.A.: Report on a general problem solving program. In: IFIP
congress, vol. 256, p. 64. Pittsburgh, PA (1959)

47. Winograd, T.: Procedures as a representation for data in a computer program for under-
standing natural language. Tech. rep., MASSACHUSETTS INST OF TECH CAMBRIDGE
PROJECT MAC (1971)

48. Tesauro, G.: Temporal difference learning and TD-Gammon. Communications of the ACM
38(3), 58–68 (1995)

49. Pollack, J.B., Blair, A.D.: Why did TD-gammon work? In: Advances in Neural Information
Processing Systems, pp. 10–16 (1997)

50. Silver, D., Huang, A., Maddison, C., Guez, A., Sifre, L., Driessche, G., Schrittwieser, J.,
Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalch-
brenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T., Hassabis,
D.: Mastering the game of go with deep neural networks and tree search. Nature 529, 484–
489 (2016). DOI 10.1038/nature16961

51. Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D., Aron, A., Diebel, J., Fong, P., Gale,
J., Halpenny, M., Hoffmann, G., Lau, K., Oakley, C., Palatucci, M., Pratt, V., Stang, P., Stro-
hband, S., Dupont, C., Jendrossek, L.E., Koelen, C., Markey, C., Rummel, C., van Niekerk,
J., Jensen, E., Alessandrini, P., Bradski, G., Davies, B., Ettinger, S., Kaehler, A., Nefian,
A., Mahoney, P.: Winning the DARPA Grand Challenge. Journal of Field Robotics (2006).
Accepted for publication

52. Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kipman, A.,
Blake, A.: Real-time human pose recognition in parts from single depth images. In: CVPR
2011, pp. 1297–1304. Ieee (2011)

53. Ferrucci, D., Brown, E., Chu-Carroll, J., Fan, J., Gondek, D., Kalyanpur, A.A., Lally, A.,
Murdock, J.W., Nyberg, E., Prager, J., et al.: Building Watson: An overview of the DeepQA
project. AI magazine 31(3), 59–79 (2010)



A Criticism of the Technological Singularity 27

54. Hinton, G., Deng, L., Yu, D., Dahl, G.E., Mohamed, A.r., Jaitly, N., Senior, A., Vanhoucke,
V., Nguyen, P., Sainath, T.N., et al.: Deep neural networks for acoustic modeling in speech
recognition: The shared views of four research groups. IEEE Signal processing magazine
29(6), 82–97 (2012)

55. Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre,
L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general
reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017)

56. Heule, M.J.: Schur number five. arXiv preprint arXiv:1711.08076 (2017)
57. Vinyals, O., Babuschkin, I., Chung, J., Mathieu, M., Jaderberg, M., Czarnecki, W., Dudzik,

A., Huang, A., Georgiev, P., Powell, R., Ewalds, T., Horgan, D., Kroiss, M., Danihelka, I.,
Agapiou, J., Oh, J., Dalibard, V., Choi, D., Sifre, L., Sulsky, Y., Vezhnevets, S., Molloy,
J., Cai, T., Budden, D., Paine, T., Gulcehre, C., Wang, Z., Pfaff, T., Pohlen, T., Yogatama,
D., Cohen, J., McKinney, K., Smith, O., Schaul, T., Lillicrap, T., Apps, C., Kavukcuoglu,
K., Hassabis, D., Silver, D.: AlphaStar: Mastering the Real-Time Strategy Game StarCraft
II. https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
(2019)

58. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Tunyasuvunakool, K., Ron-
neberger, O., Bates, R., Žídek, A., Bridgland, A., Meyer, C., Kohl, S.A.A., Potapenko, A.,
Ballard, A.J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., Back, T., Pe-
tersen, S., Reiman, D., Steinegger, M., Pacholska, M., Silver, D., Vinyals, O., Senior, A.W.,
Kavukcuoglu, K., Kohli, P., Hassabis, D.: High Accuracy Protein Structure Prediction Using
Deep Learning. https://predictioncenter.org/casp14/doc/CASP14_Abstracts.pdf (2020)

59. Rosenblatt, F.: The perceptron: a probabilistic model for information storage and organiza-
tion in the brain. Psychological review 65(6), 386 (1958)

60. Minsky, M., Papert, S.: An introduction to computational geometry. Cambridge tiass., HIT
(1969)

61. Werbos, P.J.: Applications of advances in nonlinear sensitivity analysis. In: System modeling
and optimization, pp. 762–770. Springer (1982)

62. Kelley, H.J.: Gradient theory of optimal flight paths. Ars Journal 30(10), 947–954 (1960)
63. Platt, J.: Fast training of support vector machines using sequential minimal optimization.

Advances in Kernel Methods—Support Vector Learning (pp. 185–208). AJ, MIT Press,
Cambridge, MA (1999)

64. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating
errors. nature 323(6088), 533–536 (1986)

65. LeCun, Y., Boser, B., Denker, J., Henderson, D., Howard, R., Hubbard, W., Jackel, L.: Hand-
written digit recognition with a back-propagation network. Advances in neural information
processing systems 2, 396–404 (1989)

66. Seewald, AK.: On the Brittleness of Handwritten Digit Recognition Models. ISRN Machine
Vision 2012 (2012). DOI https://doi.org/10.5402/2012/834127

67. Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001)
68. Shamsabadi, A.S., Sanchez-Matilla, R., Cavallaro, A.: Colorfool: Semantic adversarial col-

orization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 1151–1160 (2020)

69. Moosavi-Dezfooli, S.M., Fawzi, A., Frossard, P.: Deepfool: a simple and accurate method to
fool deep neural networks. In: Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 2574–2582 (2016)

70. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

71. Wikipedia contributors: Comparison of deep-learning software. https://en.wikipedia.org/

wiki/Comparison_of_deep-learning_software (2020). Downloaded on 4th Dec. 2020



28 Alexander K. Seewald

72. Sharma, N., Smeets, B., Tryggestad, C.: The decoupling of GDP and energy growth: A CEO
guide. The McKinsey Quarterly (2019)

73. Gordon, R.J.: The rise and fall of American growth: The US standard of living since the civil
war, vol. 70. Princeton University Press (2017)

74. Crivellato, E., Ribatti, D.: Soul, mind, brain: Greek philosophy and the birth of neuroscience.
Brain Research Bulletin 71(4), 327 – 336 (2007). DOI https://doi.org/10.1016/j.brainresbull.
2006.09.020. URL http://www.sciencedirect.com/science/article/pii/S036192300600298X

75. Huxley, T.H.: On the hypothesis that animals are automata, and its history. Collected essays
1 (1874)

76. Wikipedia contributors: Maillardet’s automaton. https://en.wikipedia.org/wiki/Maillardet%
27s_automaton (2020). Downloaded on 4th Dec. 2020

77. Wikipedia contributors: Digesting Duck. https://en.wikipedia.org/wiki/Digesting_Duck
(2020). Downloaded on 4th Dec. 2020

78. Wikipedia contributors: Euphonia (Sprachmaschine). https://de.wikipedia.org/wiki/
Euphonia_(Sprachmaschine) (2020). Downloaded on 4th Dec. 2020

79. Penrose, R.: The emperor’s new mind. RSA Journal 139(5420), 506–514 (1991)
80. Adams, B., Petruccione, F.: Quantum effects in the brain: A review. AVS Quantum Science

2(2), 022,901 (2020)
81. Kandel, E.R., Schwartz, J.H., Jessell, T.M., of Biochemistry, D., Jessell, M.B.T., Siegelbaum,

S., Hudspeth, A.: Principles of neural science, 4th Edition. McGraw-Hill New York (2000)
82. Heindl, A., Schepelmann, M., Nica, R., Ecker, R., Pietschmann, P., Seewald, A.K., Thalham-

mer, T., Ellinger, I.: Toward the automated detection and characterization of osteoclasts in
microscopic images. In: Principles of Osteoimmunology, pp. 31–57. Springer (2016)

83. Seewald, A.K.: Revisiting End-to-end Deep Learning for Obstacle Avoidance: Replication
and Open Issues. In: ICAART (2), pp. 652–659 (2020)

84. Seewald, A.K., Cypser, J., Mendenhall, A., Johnson, T.: Quantifying phenotypic variation
in isogenic Caenorhabditis elegans expressing Phsp-16.2:: gfp by clustering 2D expression
patterns. PloS one 5(7), e11,426 (2010)

85. Hofstadter, D.R.: I am a strange loop. Basic books (2007)
86. Sawyer, R.J.: WWW: wake. Penguin (2009)
87. Hogan, J.P.: The Two Faces of Tomorrow. Baen Books (1997)
88. Hogan, J.P.: Mind Matters Exploring the World of Artificial Intelligence. Del Ray / Ballan-

tine Publishing Group (1998)
89. Hameroff, S., Penrose, R.: Reply to seven commentaries on “Consciousness in the universe:

Review of the ’Orch OR’ theory”. Physics of Life Reviews 11(1), 94–100 (2014). DOI
10.1016/j.plrev.2013.11.013


